Don't use a calculator

Algebra Level 3

Find the value of 2015 × 403 3 2 + 6045 201 6 3 1 + 2017 × 403 1 2 + 6051 201 6 3 + 1 \frac{2015\times4033^2 + 6045}{2016^3 - 1} + \frac{2017\times4031^2 + 6051}{2016^3 + 1}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 30, 2016

X = 2015 × 403 3 3 + 6045 201 6 3 1 + 2017 × 403 1 3 + 6051 201 6 3 + 1 Let a = 2016 = ( a 1 ) ( 2 a + 1 ) 2 + 3 ( a 1 ) a 3 1 + ( a + 1 ) ( 2 a 1 ) 2 + 3 ( a + 1 ) a 3 + 1 = ( 2 a + 1 ) 2 + 3 a 2 + a + 1 + ( 2 a 1 ) 2 + 3 a 2 a + 1 = 4 a 2 + 4 a + 4 a 2 + a + 1 + 4 a 2 4 a + 4 a 2 a + 1 = 4 + 4 = 8 \begin{aligned} X & = \frac {2015\times 4033^3+6045}{2016^3-1} + \frac {2017\times 4031^3+6051}{2016^3+1} & \small {\color{#3D99F6}\text{Let }a=2016} \\ & = \frac {(a-1)(2a+1)^2+3(a-1)}{a^3-1} + \frac {(a+1)(2a-1)^2+3(a+1)}{a^3+1} \\ & = \frac {(2a+1)^2+3}{a^2+a+1} + \frac {(2a-1)^2+3}{a^2-a+1} \\ & = \frac {4a^2+4a+4}{a^2+a+1} + \frac {4a^2-4a+4}{a^2-a+1} \\ & = 4+4 \\ & = \boxed{8} \end{aligned}

Ah nice. Letting a = 2016 a = 2016 greatly simplifies the calculations that we have to think about.

Calvin Lin Staff - 4 years, 7 months ago
Ayush G Rai
Oct 30, 2016

= 2015 × 4033 2 + 2015 × 3 2016 3 1 + 2017 × 4031 2 + 2017 × 3 2016 3 + 1 =\dfrac{2015\times{4033}^2+2015\times 3}{{2016}^3-1}+\dfrac{2017\times {4031}^2+2017\times 3}{{2016}^3+1}

We now use ( a 3 + b 3 ) = ( a + b ) ( a 2 a b + b 2 ) {\color{#D61F06}(a^3+b^3)=(a+b)(a^2-ab+b^2)} and ( a 3 b 3 ) = ( a b ) ( a 2 + a b + b 2 ) {\color{#3D99F6}(a^3-b^3)=(a-b)(a^2+ab+b^2)} to factorize the denominators.

= 2015 × ( 4033 2 + 3 ) ( 2016 1 ) ( 2016 2 + 2016 + 1 ) + 2017 × ( 4031 2 + 3 ) ( 2016 1 ) ( 2016 2 2016 + 1 ) =\dfrac{\cancel{2015}\times({4033}^2+3)}{\cancel{(2016-1)}({2016}^2+2016+1)}+\dfrac{\cancel{2017}\times({4031}^2+3)}{\cancel{(2016-1)}({2016}^2-2016+1)}

= ( 2016 × 2 + 1 ) 2 + 3 2016 2 + 2016 + 1 + ( 2016 × 2 1 ) 2 + 3 2016 2 2016 + 1 =\dfrac{{(2016\times2+1)}^2+3}{{2016}^2+2016+1}+\dfrac{{(2016\times2-1)}^2+3}{{2016}^2-2016+1}

= 4 × 2016 2 + 4 × 2016 + 4 2016 2 + 2016 + 1 + 4 × 2016 2 4 × 2016 + 4 2016 2 2016 + 1 =\dfrac{4\times {2016}^2+4\times 2016+4}{{2016}^2+2016+1}+\dfrac{4\times {2016}^2-4\times 2016+4}{{2016}^2-2016+1}

= 4 × ( 2016 2 + 2016 + 1 ) ( 2016 2 + 2016 + 1 ) + 4 × ( 2016 2 2016 + 1 ) ( 2016 2 2016 + 1 ) =\dfrac{4\times(\cancel{{2016}^2+2016+1})}{(\cancel{{2016}^2+2016+1})}+\dfrac{4\times(\cancel{{2016}^2-2016+1})}{(\cancel{{2016}^2-2016+1})}

= 4 + 4 = 8 . =4+4=\boxed{8}.

Don't you mean "factorize the denominators" instead?

Calvin Lin Staff - 4 years, 7 months ago

oh.thanks.i have corrected the mistake

Ayush G Rai - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...