Don't Use A Calculator

Algebra Level 2

What is bigger, 201 7 2 201 6 2 2017 2016 o r 1 0 3 ? \displaystyle{\frac{2017^2-2016^2}{2017\cdot2016}\;\mathrm{or}\;10^{-3}}?

They are equal 1 0 3 10^{-3} 201 7 2 201 6 2 2017 2016 \displaystyle{\frac{2017^2-2016^2}{2017\cdot 2016}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

201 7 2 201 6 2 2017 × 2016 = ( 2017 2016 ) ( 2017 + 2016 ) 2017 × 2016 < 2 × 2017 2017 × 2016 = 1 1008 < 1 1000 = 1 0 3 \dfrac{2017^{2} - 2016^{2}}{2017 \times 2016} = \dfrac{(2017 - 2016)(2017 + 2016)}{2017 \times 2016} \lt \dfrac{2 \times 2017}{2017 \times 2016} = \dfrac{1}{1008} \lt \dfrac{1}{1000} = 10^{-3} .

Thus 1 0 3 \boxed{10^{-3}} is the greater of the two given values.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...