Don't use calculus

Algebra Level 3

( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large \frac{(x+\frac{1}{x})^{6}-(x^{6}+\frac{1}{x^{6}})-2}{(x+\frac{1}{x})^{3}+(x^{3}+\frac{1}{x^{3}})}

Find the minimum value of the expression above for positive x x .


Source: TN RMO 2015


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 6 [ ( x 3 + 1 x 3 ) 2 2 ] 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 6 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = [ ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ] [ ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ] ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 3 ( x 3 + 1 x 3 ) = x 3 + 3 x + 3 x + 1 x 3 x 3 1 x 3 = 3 ( x + 1 x ) \begin{aligned} \frac{\left(x+\frac{1}{x}\right)^6 - \color{#3D99F6}{ \left(x^6+\frac{1}{x^6}\right)} -2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)} & = \frac{\left(x+\frac{1}{x}\right)^6 - \color{#3D99F6}{\left[ \left(x^3+\frac{1}{x^3}\right)^2 - 2\right]} -2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)} \\ & = \frac{\left(x+\frac{1}{x}\right)^6 - \left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)} \\ & = \frac{\left[ \left(x+\frac{1}{x}\right)^3 - \left(x^3+\frac{1}{x^3}\right)\right] \left[ \left(x+\frac{1}{x}\right)^3 + \left(x^3+\frac{1}{x^3}\right)\right]}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)} \\ & = \left(x+\frac{1}{x}\right)^3 - \left(x^3+\frac{1}{x^3}\right) \\ & = x^3+3x+\frac{3}{x}+\frac{1}{x^3} - x^3-\frac{1}{x^3} \\ & = 3\left(x+\frac{1}{x}\right) \end{aligned}

Using AM-GM inequality for x > 0 x > 0 , we have x + 1 x 2 x+\dfrac{1}{x} \ge 2 .

Then the maximum ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = 3 × 2 = 6 \dfrac{\left(x+\frac{1}{x}\right)^6 - \left(x^6+\frac{1}{x^6}\right) -2}{\left(x+\frac{1}{x} \right)^3 + \left( x^3+\frac{1}{x^3}\right)} = 3 \times 2 =\boxed{6}

Same way! But theres a typo in your solution. In the last step you have written the maximum. It should be the minimum.

Shreyash Rai - 5 years, 5 months ago

my solution is just same as yours .....thanks

Swarnendu Bhattacharjee - 5 years, 5 months ago

i did same way

Sarith Imaduwage - 5 years, 5 months ago
Shivam Jadhav
Jan 3, 2016

Let ( x + 1 x ) = m . . . . . . . ( 1 ) \boxed{(x+\frac{1}{x})=m}.......(1) . Therefore ( x 3 + 1 x 3 ) + 3 ( x + 1 x ) = m 3 (x^{3}+\frac{1}{x^{3}})+3(x+\frac{1}{x})=m^{3} ( x 3 + 1 x 3 ) = m 3 3 m . . . . . . . ( 2 ) \boxed{(x^{3}+\frac{1}{x^{3}})=m^{3}-3m}.......(2) Squaring both sides , we get ( x 6 + 1 x 6 ) = m 6 + 9 m 2 6 m 4 2 . . . . . . . . ( 3 ) \boxed{(x^{6}+\frac{1}{x^{6}})=m^{6}+9m^{2}-6m^{4}-2}........(3) Now rewriting the given expression in terms of m m we get = m 6 ( m 6 + 9 m 2 6 m 4 2 ) 2 m 3 + m 3 3 m =\frac{m^{6}-(m^{6}+9m^{2}-6m^{4}-2)-2}{m^{3}+m^{3}-3m} = 6 m 4 9 m 2 2 m 3 3 m =\frac{6m^{4}-9m^{2}}{2m^{3}-3m} = 3 m =3m By A . M G . M A.M-G.M x + 1 x 2 x+\frac{1}{x}\geq2 Therefore 3 m 6 3m\geq6 .

Hence the minimum value of the given expression is 6 6

Nice solution! This question is there in the algebra material of the institute where I teach for IIT-JEE

Deepak Kumar - 5 years, 5 months ago

Log in to reply

Chal be chsl gappp mat mare

VIneEt PaHurKar - 5 years, 1 month ago

Same method

Aditya Kumar - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...