An algebra problem by Dev Sharma

Algebra Level 5

{ a 2 + b 2 + a b = 9 b 2 + c 2 + b c = 16 c 2 + a 2 + a c = 25 \large \begin{cases}\begin{aligned} a^2 + b^2 + ab &= 9\\ b^2 + c^2 + bc &= 16\\ c^2 + a^2 + ac &= 25 \end{aligned}\end{cases}

If a , b , c a,b,c satisfy the system above, find a b + b c + c a |ab + bc + ca| .

8 3 8\sqrt{3} 6 5 6\sqrt{5} 8 \sqrt{8} 8 5 8\sqrt{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Choi Chakfung
Jan 14, 2017

C o n s i d e r A B C , w i t h A B = 3 , A C = 5 , B C = 4. o b v i o u s l y , i t i s a r i g h t a n g l e d t r i a n g l e . O i s a p i o n t i n s i d e t h e s u c h t h a t A O B , A O C , B O C = 120 ° l e t A O = a , O B = b , O C = c , b y c o s i n e l a w . a 2 + b 2 2 a b c o s 120 ° = 3 2 a 2 + b 2 + a b = 9 b 2 + c 2 2 b c c o s 120 ° = 4 2 b 2 + c 2 + b c = 16 a 2 + c 2 2 a c c o s 120 ° = 5 2 a 2 + c 2 + a c = 25 , w h i c h i s a t r i a n g l e s a t i s f i e s t h e e q u a t i o n s B y c o n s i d e r i t s a r e a , a b s i n 120 ° 2 + b c s i n 120 ° 2 + a c s i n 120 ° 2 = 3 × 4 2 ( a b + b c + a c ) s i n 120 ° 2 = 6 ( a b + b c + a c ) = 8 3 Consider\quad \triangle ABC,with\quad AB=3,AC=5,BC=4.obviously,\quad it\quad is\quad a\quad right-angled\quad triangle.\\ O\quad is\quad a\quad piont\quad inside\quad the\quad such\quad that\quad \angle \quad AOB,\angle AOC,\angle BOC=120°\\ let\quad AO=a,OB=b,OC=c,by\quad cosine\quad law.\\ { a }^{ 2 }+{ b }^{ 2 }-2abcos120°={ 3 }^{ 2 }\rightarrow { a }^{ 2 }+{ b }^{ 2 }+ab=9\\ { b }^{ 2 }+{ c }^{ 2 }-2bccos120°={ 4 }^{ 2 }{ \rightarrow b }^{ 2 }+{ c }^{ 2 }+bc=16\\ { a }^{ 2 }+{ c }^{ 2 }-2accos120°={ 5 }^{ 2 }\rightarrow { a }^{ 2 }+{ c }^{ 2 }+ac=25,which\quad is\quad a\quad triangle\quad satisfies\quad the\quad equations\quad \\ By\quad consider\quad it's\quad area,\quad \frac { absin120° }{ 2 } +\frac { bcsin120° }{ 2 } +\frac { acsin120° }{ 2 } =\frac { 3\times 4 }{ 2 } \\ (ab+bc+ac)\frac { sin120° }{ 2 } =6\rightarrow (ab+bc+ac)=8\sqrt { 3 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...