Don't use trigonometry!

Geometry Level 4

In the triangle shown above, the cevian has a length of d d . Find d 2 d^2 .

Note: Don’t use trigonometry.


The answer is 109.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Marta Reece
Apr 27, 2017

Trig solution (even if it is against the rules)

Law of cosines in A B C \triangle ABC provides: cos ( C B A ) = 1 2 2 + 1 8 2 1 5 2 2 × 12 × 18 = 9 16 \cos(CBA)=\frac{12^2+18^2-15^2}{2\times12\times18}=\frac{9}{16}

Law of cosines in B C D \triangle BCD does the rest: d 2 = 1 2 2 + 1 0 2 2 × 10 × 12 × cos ( C B A ) = 109 d^2=12^2+10^2-2\times10\times12\times\cos(CBA)=\boxed{109}

Chew-Seong Cheong
Apr 27, 2017

Using Heron's formula , the area of A B C \triangle ABC is given by:

A = s ( s a ) ( s b ) ( s c ) where a = 12 , b = 15 , c = 18 , s = 12 + 15 + 18 2 = 45 2 = 45 ( 45 24 ) ( 45 30 ) ( 45 36 ) 2 4 = 45 ( 21 ) ( 15 ) ( 9 ) 16 = 135 7 4 \begin{aligned} A & = \sqrt{s(s-a)(s-b)(s-c)} & \small \color{#3D99F6} \text{where }a=12, b=15, c=18, s=\frac {12+15+18}2 = \frac {45}2 \\ & = \sqrt{\frac {45(45-24)(45-30)(45-36)}{2^4}} \\ & = \sqrt{\frac {45(21)(15)(9)}{16}} \\ & = \frac {135\sqrt 7}4 \end{aligned}

Let the altitude of the triangle C E CE be h h , then A B × h 2 = A \dfrac {\overline{AB} \times h}2 = A h = 135 7 4 × 2 18 = 15 7 4 \implies h = \dfrac {135\sqrt 7}4 \times \dfrac 2{18} = \dfrac {15\sqrt 7}4 .

By Pythagorean theorem , we have B E = C B h 2 = 1 2 2 ( 15 7 4 ) 2 = 27 4 \overline{BE} = \sqrt{\overline{CB} -h^2} = \sqrt{12^2-\left(\frac {15\sqrt 7}4\right)^2} = \dfrac {27}4 .

E D = B D B E = 10 27 4 = 13 4 \implies \overline{ED} = \overline{BD} - \overline{BE} = 10 - \dfrac {27}4 = \dfrac {13}4 and by Pythagorean theorem again:

d = h 2 + E D 2 = ( 15 7 4 ) 2 ( 13 4 ) 2 = 109 \begin{aligned} d & = \sqrt{h^2+ \overline{ED}^2} = \sqrt{\left(\frac {15\sqrt 7}4\right)^2 - \left(\frac {13}4\right)^2} = \sqrt{109} \end{aligned}

d 2 = 109 \implies d^2 = 109

Draw the altitude C E = h CE=h . Let E D = p ED=p .

Considering triangle CBD:

Applying Pythagorean Theorem at C E B \triangle CEB , we have

1 2 2 = h 2 + ( 10 p ) 2 12^2=h^2+(10-p)^2

144 = h 2 + ( 100 20 p + p 2 ) 144=h^2+(100-20p+p^2)

144 = h 2 + 100 20 p + p 2 144=h^2+100-20p+p^2

44 = h 2 20 p + p 2 44=h^2-20p+p^2 ( 1 ) \color{#D61F06}(1)

Applying Pythagorean Theorem at C E D \triangle CED , we have

d 2 = p 2 + h 2 d^2=p^2+h^2 \implies h 2 = d 2 p 2 h^2=d^2-p^2

Replacing h 2 h^2 in ( 1 ) \color{#D61F06}(1) , we obtain

44 = d 2 p 2 20 p + p 2 44=d^2-p^2-20p+p^2

d 2 = 44 + 20 p d^2=44+20p ( 2 ) \color{#D61F06}(2)

Considering triangle CDA:

Applying Pythagorean Theorem at C E A \triangle CEA , we have

1 5 2 = h 2 + ( 8 + p ) 2 15^2=h^2+(8+p)^2

225 = h 2 + ( 64 + 16 p + p 2 ) 225=h^2+(64+16p+p^2)

225 = h 2 + 64 + 16 p + p 2 225=h^2+64+16p+p^2

161 = h 2 + 16 p + p 2 161=h^2+16p+p^2 ( 3 ) \color{#D61F06}(3)

But h 2 = d 2 p 2 h^2=d^2-p^2

Substitute h 2 h^2 in ( 3 ) \color{#D61F06}(3) ,

161 = d 2 p 2 + 16 p + p 2 161=d^2-p^2+16p+p^2

161 = d 2 + 16 p 161=d^2+16p

d 2 = 161 16 p d^2=161-16p ( 4 ) \color{#D61F06}(4)

Equate ( 2 ) \color{#D61F06}(2) and ( 4 ) \color{#D61F06}(4) :

d 2 = d 2 d^2=d^2

44 + 20 p = 161 16 p 44+20p=161-16p

36 p = 161 44 36p=161-44

36 p = 117 36p=117

p = 117 36 p=\dfrac{117}{36}

Then, solve for d d by substituting 117 36 \dfrac{117}{36} for p p in ( 2 ) \color{#D61F06}(2) or ( 4 ) \color{#D61F06}(4)

d 2 = 161 16 p d^2=161-16p

d 2 = 161 16 ( 117 36 ) d^2=161-16(\dfrac{117}{36})

d 2 = 109 d^2=109

d = 109 d=\sqrt{109}

Finally,

d 2 = 109 d^2 = 109

Or you could use the Stewart's theorem though the final result does not involve a trigonometric expression or term the proof is by the cosine rule

Sathvik Acharya - 4 years, 1 month ago

Log in to reply

Yes, the stewart's theorem is a shorter solution.

A Former Brilliant Member - 4 years, 1 month ago

Did it this way too, but I must have made a miscalculation somewhere.

Peter van der Linden - 4 years, 1 month ago

L e t X = B E . U s i n g P y t h a g o r e a n t h e o r e m , i n Δ s , C B E a n d C E A , 1 2 2 X 2 = h 2 = 1 5 2 ( 18 X ) 2 . 81 1 8 2 + 36 X = 0. X = 27 4 . S o d 2 = h 2 + X 2 = ( 1 2 2 X 2 ) + ( 10 X ) 2 = 144 20 X + 100 = 109. Let~X=BE.\\ Using~Pythagorean~ theorem, ~in~\Delta s, ~CBE~and~CEA,\\ 12^2~-~X^2=h^2=15^2~-~(18 - X)^2.\\ \therefore~81-18^2+36X=0.~~\implies~X=\dfrac {27}4.\\ So~~~d^2=h^2+X^2=(12^2 - X^2)+(10-X)^2\\ =144-20*X+100=\large \color{#D61F06}{109}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...