Don't wanna bash!

Geometry Level 5

Let there be two concentric ellipses such that both the focii of first lie on the second ellipse and both the focii of second lie on the first.

Let u u and v v be the eccentricities of the two ellipses satisfying u v = 3 4 uv = \frac{3}{4} .

Angle between the axes of these ellipse is x x and cos x = 8 3 \cos x = \frac{\sqrt{8}}{3}

Find the value of u 2 + v 2 u^2 +v^2 .


The answer is 1.50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Nov 22, 2016

Equation of first ellipse (assumed WLOG in standard position):

x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{ a^2} + \dfrac{y^2}{b^2} = 1

Equation of second ellipse (before rotation)

x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2} {a'^2} + \dfrac{y^2}{b'^2} = 1

After rotation by an angle θ \theta the second ellipse has the equation:

r T R D R T r = 1 r^T R D R^T r = 1

with

D = diag { 1 a 2 , 1 b 2 } D = \text{diag} \{ \dfrac{1}{a'^2} , \dfrac{1}{b'^2} \}

and

R = [ cos θ sin θ sin θ cos θ ] R = \begin{bmatrix} \cos \theta && - \sin \theta \\ \sin \theta && \cos \theta \end{bmatrix}

Now let c = cos θ c = \cos \theta and s = sin θ s = \sin \theta .

Performing the multiplication R D R T R D R^T we find that

R D R T = [ c 2 a 2 + s 2 b 2 ( 1 a 2 1 b 2 ) s c ( 1 a 2 1 b 2 ) s c c 2 b 2 + s 2 a 2 ] R D R^T = \begin{bmatrix} \dfrac{c^2}{ a'^2} + \dfrac{s^2}{ b'^2} && (\dfrac{1}{a'^2} - \dfrac{1}{b'^2}) s c \\ (\dfrac{1}{a'^2} - \dfrac{1}{b'^2}) s c && \dfrac{c^2}{ b'^2} + \dfrac{s^2}{ a'^2} \end{bmatrix}

Focii of first ellipse are at ( a u , 0 ) ( a u, 0) and ( a u , 0 ) (-au, 0) .

Focii of second ellipse are at ( a v , 0 ) (a' v, 0) and ( a v , 0 ) (-a' v, 0) rotated by θ \theta , i.e. ( a v c , a v s ) (a'v c, a'v s) and ( a v c , a v s ) (-a' v c, -a' v s )

Substituting the coordinates of one of the focii of the first ellipse into the equation of the second ellipse,

( c 2 a 2 + s 2 b 2 ) ( a 2 u 2 ) = 1 ( \dfrac{c^2}{ a'^2} + \dfrac{s^2}{ b'^2}) (a^2 u^2) = 1

Similarly, substituting the coordinates of one of the focii of the second ellipse into the equation of the first ellipse,

( a 2 v 2 ) ( c 2 a 2 + s 2 b 2 ) = 1 (a'^2 v^2) ( \dfrac{c^2}{ a^2} + \dfrac{s^2}{ b^2} )= 1

Now, from the definition of eccentricity, we have u = 1 ( b / a ) 2 u = \sqrt{1 - (b/a)^2} ,therefore,

b 2 = a 2 ( 1 u 2 ) b^2 = a^2 (1 - u^2) , and similarly, b 2 = a 2 ( 1 v 2 ) b'^2 = a'^2 (1 - v^2)

Substituting this, we arrive at,

a 2 u 2 a 2 ( c 2 + s 2 ( 1 v 2 ) ) = 1 \dfrac{a^2 u^2}{ a'^2} ( c^2 + \dfrac{s^2}{ (1 - v^2) }) = 1

a 2 v 2 a 2 ( c 2 + s 2 ( 1 u 2 ) ) = 1 \dfrac{a'^2 v^2}{ a^2} ( c^2 + \dfrac{s^2}{ (1 - u^2)} ) = 1

Multiplying the two equations:

( u v ) 2 ( c 2 + s 2 ( 1 v 2 ) ) ( c 2 + s 2 ( 1 u 2 ) ) = 1 (uv)^2 ( c^2 + \dfrac{s^2}{ (1 - v^2)} )(c^2 + \dfrac{ s^2 }{ (1 - u^2)} ) = 1

Which can be simplified as follows:

( u v ) 2 ( c 2 ( 1 v 2 ) + s 2 ) ( c 2 ( 1 u 2 ) + s 2 ) = ( 1 u 2 ) ( 1 v 2 ) (uv)^2 ( c^2 (1 - v^2) + s^2 ) (c^2 (1 - u^2) + s^2 ) = (1 - u^2 )(1 - v^2)

( u v ) 2 ( 1 c 2 v 2 ) ( 1 c 2 u 2 ) = ( 1 ( u 2 + v 2 ) + ( u v ) 2 ) (uv)^2 ( 1 - c^2 v^2) (1 - c^2 u^2 ) = (1 - (u^2 + v^2) + (uv)^2 )

( u v ) 2 ( 1 c 2 ( u 2 + v 2 ) + c 4 ( u v ) 2 ) = 1 ( u 2 + v 2 ) + ( u v ) 2 (uv)^2 ( 1 - c^2 (u^2 + v^2) + c^4 (uv)^2 ) = 1 - (u^2 + v^2) + (uv)^2

Now, let e = u v e = uv and S = u 2 + v 2 S = u^2 + v^2 , then

e 2 ( 1 c 2 S + c 4 e 2 ) = 1 S + e 2 e^2 (1 - c^2 S + c^4 e^2 ) = 1 - S + e^2

which implies

e 2 ( c 2 S + c 4 e 2 ) = 1 S e^2 ( - c^2 S + c^4 e^2 ) = 1 - S

Hence,

S = ( 1 e 4 c 4 ) ( 1 e 2 c 2 ) = 1 + e 2 c 2 S = \dfrac{(1 - e^4 c^4)}{ (1 - e^2 c^2) }= 1 + e^2 c^2

Finally, substituting e = 3 4 e = \dfrac{3}{4} and c = 8 3 c = \dfrac{\sqrt{8}}{3} we get

S = 1.5 S = 1.5

Thanks for posting a solution! +1

Harsh Shrivastava - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...