Don't want x x and y y ? Ok, we've X X and Y Y !

x x is a positive integer which follows the condition 13 ( 4 x 2 22 x + 15 ) \displaystyle 13 \mid (4x^2-22x+15)


y y is a positive integer which follows the condition 13 ( 4 y 2 + 22 y + 15 ) \displaystyle 13 \mid (4y^2+22y+15)

Let the sum of the first 25 25 smallest possible values of x x be X \color{#3D99F6}{X} .

Let the sum of the first 25 25 smallest possible values of y y be Y \color{#3D99F6}{Y} .

Find the value of \textbf{Find the value of} X + Y \color{#3D99F6}{X+Y}


The answer is 4061.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Jun 18, 2015

4 x 2 22 x + 15 0 ( m o d 13 ) 4 x 2 + 4 x 2 + 2 0 ( m o d 13 ) 4x^2-22x+15\equiv 0\pmod{13}\implies 4x^2+4x^2+2\equiv 0 \pmod{13} ( 2 x + 1 ) 2 12 ( m o d 13 ) (2x+1)^2\equiv 12 \pmod{13} similarly 4 y 2 + 22 y + 15 0 ( m o d 13 ) ( 2 y 1 ) 2 12 ( m o d 13 ) 4y^2+22y+15\equiv 0\pmod{13}\implies (2y-1)^2\equiv 12\pmod{13} let the 25 x A = x 1 , x 2 , x 3 , . . . . , x 25 A={x_1,x_2,x_3,....,x_{25}} .let the 25 y be B = x 1 + 1 , x 2 + 1 , x 3 + 1 , . . . . . , x 25 + 1 B={x_1+1,x_2+1,x_3+1,.....,x_{25}+1} . note that if n 2 12 ( m o d 13 ) , n 5 , 8 ( m o d 13 ) n^2\equiv 12\pmod{13}, n\equiv 5,8\pmod{13} but since n has to be odd, for some integer z : 2 x + 1 = 13 ( 2 z ) + 5 , 13 ( 2 z + 1 ) + 8 2x+1=13(2z)+5 , 13(2z+1)+8 2 x + 1 = 26 z + 5 , , 26 z + 21 2x+1=26z+5 ,,26z+21 x = 13 z + 2 , 13 z + 10 x=13z+2 ,13z+10 so X = n = 1 25 ( x n ) = n = 0 12 ( 13 n + 2 ) + n = 0 11 ( 13 n + 10 ) X=\sum_{n=1}^{25}(x_n)=\sum_{n=0}^{12} (13n+2)+\sum_{n=0}^{11} (13n+10) X = 2018 X=2018 and Y = n = 1 25 ( x n + 1 ) = X + 25 = 2043 Y=\sum_{n=1}^{25}(x_n+1)=X+25=2043 X + Y = 4061 X+Y=4061

Aditya Raut
Aug 25, 2014

4 x 2 22 x + 15 0 ( m o d 13 ) 4 x 2 9 x + 2 0 ( m o d 13 ) 4x^2-22x+15 \equiv 0 \pmod{13}\implies 4x^2-9x+2 \equiv 0 \pmod{13} Compare the expression 4 x 2 9 x + 2 4x^2-9x+2 with a x 2 + b x + c ax^2+bx+c .

The solutions of this will be when we use the substitution

y = 2 a x + b y=2ax+b and d = b 2 4 a c d= b^2-4ac ,

and the solutions will be given by y 2 d ( m o d 13 ) y^2 \equiv d \pmod{13}

Thus we get ( 8 x 9 ) 2 9 2 4 × 4 × 2 49 ( m o d 13 ) (8x-9)^2 \equiv 9^2-4\times 4\times 2 \equiv 49 \pmod{13}

This gives 8 x 9 ± 7 ( m o d 13 ) 8x-9 \equiv \pm 7 \pmod{13} . 8 x 16 or 2 ( m o d 13 ) 8x \equiv 16 \text{ or } 2 \pmod{13}

This gives x 2 ( m o d 13 ) x\equiv 2 \pmod{13} and other solution 4 x 1 ( m o d 13 ) x 3 10 ( m o d 13 ) 4x\equiv 1 \pmod{13} \implies x\equiv -3 \equiv 10 \pmod{13} .

Thus x 2 or 10 ( m o d 13 ) x\equiv 2 \text{ or } 10 \pmod{13}


Similarly solving for y y , we get y 3 or 11 ( m o d 13 ) y\equiv 3 \text{ or } 11\pmod{13}


values of x x are of the form 13 k + 2 13k +2 and 13 k + 10 13k+10

values of y y are of the form 13 k + 3 13k+3 and 13 k + 11 13k+11

See that they are actually 4 A.P.s (Arithmetic Progressions) with common difference 13 13 .


The sum of first 25 25 values of x x will be X = k = 0 12 ( 2 + 13 k ) + k = 0 11 ( 10 + 13 k ) \displaystyle \color{#3D99F6}{X}= \sum_{k=0}^{12} (2+13k) + \sum_{k=0}^{11} (10+13k)

The sum of first 25 25 values of y y will be Y = k = 0 12 ( 3 + 13 k ) + k = 0 11 ( 11 + 13 k ) \displaystyle \color{#3D99F6}{Y}= \sum_{k=0}^{12} (3+13k) + \sum_{k=0}^{11} (11+13k)

This gives X + Y = 4061 \color{#3D99F6}{X+Y}=\boxed{4061}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...