Don't You Love Line Integrals? (Revised, Fixed Answer)

Calculus Level 3

The closed, positively oriented graph C C starts from and ends at (2,0). C C is displayed below:

Let F = ( x 2 + y 2 ) i + ( x y + y ln ( x + x 2 + y 2 ) ) j \vec{F} = (\sqrt{x^{2} + y^{2}})\vec{i} + (xy + y\ln(x + \sqrt{x^{2} + y^{2}}))\vec{j}

What is C F d r \int_{C}\vec{F}\vec{dr} ?


The answer is -2.833.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Mar 15, 2020

This was a fun problem. The curl of the vector field is equal to y y . By Stoke's Theorem, we can calculate the line integral by double-integrating the curl over the enclosed area. Integrate the right side and double the result (that is where the 2 2 outside comes from).

2 1.25 x 2.5 1 ( x 1 ) 2 0 2 y d x d y = 17 6 2.833 \large{2 \int_{1.25 x - 2.5}^{\sqrt{1 - (x-1)^2}} \int_0^2 y \, dx \, dy = -\frac{17}{6} \approx -2.833}

Just for fun, I also wrote some code to evaluate the line integral directly, by integrating the dot product of the vector field and the infinitesimal path displacement vector. While tracing the path, I had to avoid the interface points between the curve segments, since the argument of the natural log is zero at those points. The code results (printed at the bottom) agree with the double integral, as expected.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import math

N = 10**6

I = 0.0

#######################################################

# Right half circle

xc = 1.0
yc = 0.0
R = 1.0

dtheta = math.pi/N

theta = dtheta

while theta <= math.pi - dtheta:

    x = xc + R*math.cos(theta)
    y = yc + R*math.sin(theta)

    Fx = math.sqrt(x**2.0 + y**2.0)

    q1 = x + math.sqrt(x**2.0 + y**2.0)

    Fy = x*y + y*math.log(q1)

    dx = -R*math.sin(theta) * dtheta
    dy = R*math.cos(theta) * dtheta

    dI = Fx*dx + Fy*dy

    I = I + dI

    theta = theta + dtheta

#######################################################

# Left half circle

xc = -1.0
yc = 0.0
R = 1.0

dtheta = math.pi/N

theta = dtheta

while theta <= math.pi - dtheta:

    x = xc + R*math.cos(theta)
    y = yc + R*math.sin(theta)

    Fx = math.sqrt(x**2.0 + y**2.0)

    q1 = x + math.sqrt(x**2.0 + y**2.0)

    Fy = x*y + y*math.log(q1)

    dx = -R*math.sin(theta) * dtheta
    dy = R*math.cos(theta) * dtheta

    dI = Fx*dx + Fy*dy

    I = I + dI

    theta = theta + dtheta

#######################################################

# Left straight line

x1 = -2.0
y1 = 0.0

x2 = 0.0
y2 = -2.5

dx = (x2-x1)/N
dy = (y2-y1)/N

x = x1 + dx
y = y1 + dx

for j in range(0,N-1):

    Fx = math.sqrt(x**2.0 + y**2.0)

    q1 = x + math.sqrt(x**2.0 + y**2.0)

    Fy = x*y + y*math.log(q1)

    dI = Fx*dx + Fy*dy

    I = I + dI

    x = x + dx
    y = y + dy

#######################################################

# Right straight line

x1 = 0.0
y1 = -2.5

x2 = 2.0
y2 = 0.0

dx = (x2-x1)/N
dy = (y2-y1)/N

x = x1+dx
y = y1+dx

for j in range(0,N-1):

    Fx = math.sqrt(x**2.0 + y**2.0)

    q1 = x + math.sqrt(x**2.0 + y**2.0)

    Fy = x*y + y*math.log(q1)

    dI = Fx*dx + Fy*dy

    I = I + dI

    x = x + dx
    y = y + dy

#######################################################

print N
print I

#>>> 
#10000
#-2.83438016141
#>>> ================================ RESTART ================================
#>>> 
#100000
#-2.83343785716
#>>> ================================ RESTART ================================
#>>> 
#1000000
#-2.83334378703
#>>> 

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...