Dot and Cross Products

Geometry Level 3

A \vec{A} and B \vec{B} are both vectors in 3d space. The Cartesian components of A \vec{A} are known: A = 2 i ^ + j ^ + 5 k ^ \vec{A} = 2\hat{i} + \hat{j} + 5\hat{k} .

Use the following clues to express B \vec{B} in the form B = x i ^ + y j ^ + z k ^ \vec{B} = x\hat{i} + y\hat{j} + z\hat{k} .

\quad Clue #1: A B = 11 \vec{A} \cdot \vec{B} = 11 \qquad Clue #2: A × B = 13 i ^ 9 j ^ + 7 k ^ \vec{A} \times \vec{B} = -13\hat{i} - 9\hat{j} + 7\hat{k}

What is the value of the product x y z xyz ?


The answer is -6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matthew Feig
Aug 27, 2018

General Coordinate Free Result:

The vector B \vec{B} can be expressed in terms of A \vec{A} , A B \vec{A} \cdot\vec{B} , and A × B \vec{A} \times \vec{B} as follows: B = ( A B ) A A × ( A × B ) A A \vec{B} = \frac{ ( \vec{A} \cdot \vec{B} ) \vec{A} \ - \ \vec{A} \times (\vec{A} \times \vec{B})}{\vec{A} \cdot \vec{A}}


Derivation #1:

Note that A \vec{A} , A × B \vec{A} \times \vec{B} , and A × ( A × B ) \vec{A} \times (\vec{A} \times \vec{B}) are three mutually orthogonal vectors. Thus, any vector can be written as a linear combination of these three basis vectors (as long as A × B 0 \vec{A} \times \vec{B} \neq 0 ). Let us do so with the specific vector B \vec{B} . B = p A + q A × B + r A × ( A × B ) ( ) \vec{B} = \color{#D61F06}p \color{#333333}\vec{A} + \color{#D61F06}q \color{#333333}\vec{A}\times \vec{B} + \color{#D61F06}r \color{#333333} \vec{A} \times (\vec{A} \times \vec{B}) \qquad (*) We now try to express the coefficients p \color{#D61F06}p , q \color{#D61F06}q , and r \color{#D61F06}r in terms of the known information about A \vec{A} and A B \vec{A} \cdot \vec{B} .

  1. Take the dot product of A \vec{A} with ( ) (*) : A B = p A A \vec{A} \cdot \vec{B} = \color{#D61F06}p \color{#333333} \vec{A} \cdot \vec{A} , so p = A B A A \boxed { \color{#D61F06}p \color{#333333} = \frac{ \vec{A} \cdot \vec{B}}{\vec{A} \cdot \vec{A}} } .

  2. Take the dot product of A × B \vec{A} \times \vec{B} with ( ) (*) : ( A × B ) B = q ( A × B ) ( A × B ) ( \vec{A} \times \vec{B} ) \cdot \vec{B} = \color{#D61F06}q \color{#333333} ( \vec{A} \times \vec{B} ) \cdot ( \vec{A} \times \vec{B} ) . But the left hand side is zero since A × B \vec{A} \times \vec{B} is perpendicular to B \vec{B} . So q = 0 \boxed{ \color{#D61F06}q \color{#333333} = 0 } .

  3. Take the cross product of A \vec{A} with ( ) (*) . With the middle q \color{#D61F06}q term dropped, there is only one term remaining on the right hand side: A × B = r A × ( A × ( A × B ) ) \vec{A} \times \vec{B} = \color{#D61F06}r \color{#333333} \vec{A} \times ( \vec{A} \times (\vec{A} \times \vec{B}) ) . The right hand side looks ugly, but isn't too bad. The outer two cross products are of perpendicular vectors, so they just scale the vector A × B \vec{A} \times \vec{B} by the magnitude of A \vec{A} twice: A × ( A × ( A × B ) ) = A 2 A × B |\vec{A} \times ( \vec{A} \times (\vec{A} \times \vec{B}))| = |\vec{A}|^2 |\vec{A} \times \vec{B}| . And consideration of right hand rule makes it clear that the direction is antiparallel to the original vector A × B \vec{A} \times \vec{B} . Therefore, this third equation becomes A × B = r A 2 ( A × B ) \vec{A} \times \vec{B} = -\color{#D61F06}r \color{#333333} |\vec{A}|^2 (\vec{A} \times \vec{B}) . (These quick claims can be made more explicit by considering the vector triple product identity. See Derivation #2.) Since A × B 0 \vec{A} \times \vec{B} \neq 0 , we conclude r = 1 A 2 = 1 A A \boxed{ \color{#D61F06}r \color{#333333} = - \frac{1}{| \vec{A} |^2} = - \frac{1}{\vec{A} \cdot \vec{A}} } .

This proves the general result stated above.


Derivation #2:

A well known identity for the vector triple product is A × ( B × C ) = B ( A C ) C ( A B ) \vec{A} \times ( \vec{B} \times \vec{C} ) = \vec{B} ( \vec{A} \cdot \vec{C} ) - \vec{C} ( \vec{A} \cdot \vec{B} ) . Substitute A \vec{A} for B \vec{B} and B \vec{B} for C \vec{C} to obtain A × ( A × B ) = A ( A B ) B ( A A ) \vec{A} \times ( \vec{A} \times \vec{B} ) = \vec{A} ( \vec{A} \cdot \vec{B} ) - \vec{B} ( \vec{A} \cdot \vec{A} ) Solve this equation for the vector B \vec{B} on the right hand side. B ( A A ) = A ( A B ) A × ( A × B ) \vec{B} ( \vec{A} \cdot \vec{A} ) = \vec{A} ( \vec{A} \cdot \vec{B} ) - \vec{A} \times ( \vec{A} \times \vec{B} ) B = A ( A B ) A × ( A × B ) A A if A 0 \vec{B} = \frac{\vec{A} ( \vec{A} \cdot \vec{B} ) - \vec{A} \times ( \vec{A} \times \vec{B} )}{\vec{A} \cdot \vec{A}} \qquad \text{if } \vec{A} \neq 0


Application:

To apply this general result to the specific problem given here, we have a couple terms to evaluate.

  1. ( A B ) A = ( 11 ) ( 2 i ^ + j ^ + 5 k ^ ) = 22 i ^ + 11 j ^ + 55 k ^ ( \vec{A} \cdot \vec{B} ) \vec{A} = (11)( 2\hat{i} + \hat{j} + 5\hat{k}) = 22\hat{i} + 11\hat{j} + 55\hat{k}

  2. A × ( A × B ) = ( 2 i ^ + j ^ + 5 k ^ ) × ( 13 i ^ 9 j ^ + 7 k ^ ) = 52 i ^ 79 j ^ 5 k ^ \vec{A} \times ( \vec{A} \times \vec{B} ) = ( 2\hat{i} + \hat{j} + 5\hat{k} ) \times ( -13\hat{i} - 9\hat{j} + 7\hat{k} ) = 52\hat{i} - 79\hat{j} - 5\hat{k}

  3. A A = ( 2 i ^ + j ^ + 5 k ^ ) ( 2 i ^ + j ^ + 5 k ^ ) = 2 2 + 1 2 + 5 2 = 30 \vec{A} \cdot \vec{A} = ( 2\hat{i} + \hat{j} + 5\hat{k} ) \cdot ( 2\hat{i} + \hat{j} + 5\hat{k} ) = 2^2 +1^2 +5^2 = 30

Plugging it all in gives us the Cartesian components of B \vec{B} . B = A ( A B ) A × ( A × B ) A A = ( 22 i ^ + 11 j ^ + 55 k ^ ) ( 52 i ^ 79 j ^ 5 k ^ ) 30 = 30 i ^ + 90 j ^ + 60 k ^ 30 = i ^ + 3 j ^ + 2 k ^ \begin{aligned} \vec{B} & = \frac{\vec{A} ( \vec{A} \cdot \vec{B} ) - \vec{A} \times ( \vec{A} \times \vec{B} )}{\vec{A} \cdot \vec{A}} \\ & = \frac{ (22\hat{i} + 11\hat{j} + 55\hat{k}) - (52\hat{i} - 79\hat{j} - 5\hat{k}) }{30} \\ & = \frac{ -30\hat{i} + 90\hat{j} + 60\hat{k} }{30} \\ & = -\hat{i} + 3\hat{j} + 2\hat{k} \end{aligned} So the requested product is ( 1 ) ( 3 ) ( 2 ) = 6 (-1)(3)(2) = \color{#D61F06}\boxed{-6} .

K T
Dec 19, 2020

We have 4 equations and 3 variables. Dot product: A B = 2 x + y + 5 z = 11 \vec{A} \cdot \vec{B}=2x+y+5z=11 and the Cross product: z 5 y = 13 , 5 x 2 z = 9 , 2 y x = 7 z-5y=-13, 5x-2z=-9, 2y-x=7 The cross product equations can be put in matrix form. [ 0 5 1 13 5 0 2 9 1 2 0 7 ] [ 0 5 1 13 0 10 2 26 1 2 0 7 ] \left[ \begin{array}{ccc|c} 0 & -5 & 1 & -13 \\ 5 & 0 & -2 & -9 \\ -1 & 2 & 0 & 7 \\ \end{array} \right] \sim \left[ \begin{array}{ccc|c} 0 & 5 & -1 & 13 \\ 0 & 10 & -2 & 26 \\ 1 & -2 & 0 & -7 \\ \end{array} \right] The first two equations are dependent, we replace one of them with the equation from the dot product and continue to to solve:

[ 1 2 0 7 0 5 1 13 2 1 5 11 ] [ 1 2 0 7 0 5 1 13 0 5 5 25 ] [ 1 2 0 7 0 0 6 12 0 1 1 5 ] [ 1 0 0 1 0 0 1 2 0 1 0 3 ] \left[ \begin{array}{ccc|c} 1 & -2 & 0 & -7 \\ 0 & 5 & -1 & 13 \\ 2 & 1 & 5 &11 \\ \end{array} \right] \sim \left[ \begin{array}{ccc|c} 1 & -2 & 0 & -7\\ 0 & 5 & -1 & 13 \\ 0 & 5 & 5 & 25 \\ \end{array} \right] \sim \left[ \begin{array}{ccc|c} 1 & -2 & 0 & -7\\ 0 & 0 & -6 & -12 \\ 0 & 1 & 1 & 5 \\ \end{array} \right] \sim \left[ \begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 3 \\ \end{array} \right] So B = ( 1 , 3 , 2 ) \vec{B}=(-1, 3,2) and the answer is 6 \boxed{-6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...