Double

Calculus Level 3

1 + 1 2 ! + 1 4 ! + 1 6 ! + 1 + 1 3 ! + 1 5 ! + 1 7 ! + = ? \large \frac{1 +\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!}+ \cdots}{1 + \frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \cdots} = \, ?


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

e 2 1 e 2 + 1 \frac{e^2 -1}{e^2 +1} e 1 e + 1 \frac{e -1}{e+1} e 2 e + 2 \frac{e - 2}{e +2} e 2 + 1 e 2 1 \frac{e^2 +1}{e^2 -1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Quick answer: It should be clear that the numerator of the given expression is greater than the denominator, so we are looking for an answer > 1 \gt 1 . Only one option fill that requirement, namely e 2 + 1 e 2 1 \dfrac{e^{2} + 1}{e^{2} - 1} .

Complete answer: Note first that e x = n = 0 x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + . . . . e^{x} = \displaystyle\sum_{n=0}^{\infty} \dfrac{x^{n}}{n!} = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + .... , and so

e x = n = 0 ( 1 ) n x n n ! = 1 x + x 2 2 ! x 3 3 ! + x 4 4 ! . . . . . e^{-x} = \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^{n} x^{n}}{n!} = 1 - x + \dfrac{x^{2}}{2!} - \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} - ..... .

The numerator of the given expression is then equal to e 1 + e 1 2 \dfrac{e^{1} + e^{-1}}{2} , and the denominator to e 1 e 1 2 \dfrac{e^{1} - e^{-1}}{2} .

The given expression can then be simplified to e + 1 e e 1 e = e 2 + 1 e 2 1 = coth ( 1 ) \dfrac{e + \frac{1}{e}}{e - \frac{1}{e}} = \boxed{\dfrac{e^{2} + 1}{e^{2} - 1}} = \coth(1) .

hyperbolic functions are those...

Md Zuhair - 4 years, 3 months ago

Log in to reply

Yes, indeed we have cosh ( x ) = e x + e x 2 \cosh(x) = \dfrac{e^{x} + e^{-x}}{2} and sinh ( x ) = e x e x 2 \sinh(x) = \dfrac{e^{x} - e^{-x}}{2} , making the given expression coth ( 1 ) \coth(1) as I indicated in my solution.

Brian Charlesworth - 4 years, 3 months ago
Atul Kumar Ashish
Feb 22, 2017

Let us assume the value to be y y . 1 + 1 2 ! + 1 4 ! + 1 + 1 3 ! + 1 5 ! + = y \frac{1+\frac{1}{2!}+\frac{1}{4!}+\cdots}{1+\frac{1}{3!}+\frac{1}{5!}+\cdots}=y Now applying componendo-dividendo, ( 1 + 1 2 ! + 1 4 ! + ) + ( 1 + 1 3 ! + 1 5 ! + ) ( 1 + 1 2 ! + 1 4 ! + ) ( 1 + 1 3 ! + 1 5 ! + ) = y + 1 y 1 \frac{\left(1+\frac{1}{2!}+\frac{1}{4!}+\cdots \right)+\left(1+\frac{1}{3!}+\frac{1}{5!}+\cdots \right)}{\left(1+\frac{1}{2!}+\frac{1}{4!}+\cdots \right)-\left(1+\frac{1}{3!}+\frac{1}{5!}+\cdots \right)}=\frac{y+1}{y-1} We can see that the numerator becomes e e and denominator becomes e 1 e^{-1} , e e 1 = y + 1 y 1 \frac{e}{e^{-1}}=\frac{y+1}{y-1} e 2 = y + 1 y 1 e^2=\frac{y+1}{y-1} y = e 2 + 1 e 2 1 y=\boxed{\frac{e^2+1}{e^2-1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...