Double Angle Summation

Calculus Level 3

Find the value of z z , where z z is a positive integer given that

k = 0 ( 1 ) k ( π z ) 2 k ( 2 k ) ! = 2 + 2 2 \large \sum _{ k=0 }^{ \infty }{ \frac { { (-1) }^{ k }(\frac {\pi} { z})^{ 2k } }{ (2k)! } } =\frac { \sqrt { \sqrt { 2 } +2 } }{ 2 }


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Will McGlaughlin
May 10, 2018

Firstly we observe that k = 0 ( 1 ) k ( π z ) 2 k ( 2 k ) ! = c o s ( π z ) \sum _{ k=0 }^{ \infty }{ \frac { { (-1) }^{ k }(\frac {\pi} { z})^{ 2k } }{ (2k)! } } =cos(\frac {\pi} { z})

Now we are solving for c o s ( π z ) = 2 + 2 2 cos(\frac {\pi} { z})=\frac { \sqrt { \sqrt { 2 } +2 } }{ 2 }

Squaring both sides we achieve cos 2 π z = 2 + 2 4 \cos ^{ 2 }{ \frac { \pi }{ z } } =\frac { \sqrt { 2 } +2 }{ 4 }

Applying the double angle formula for cosine c o s ( 2 π z ) + 1 2 = 2 + 2 4 \frac { cos(\frac { 2\pi }{ z } )+1 }{ 2 } =\frac { \sqrt { 2 } +2 }{ 4 }

c o s ( 2 π z ) + 1 = 2 2 + 1 cos(\frac { 2\pi }{ z } )+1=\frac { \sqrt { 2 } }{ 2 } +1

c o s ( 2 π z ) = 2 2 cos(\frac { 2\pi }{ z } )=\frac { \sqrt { 2 } }{ 2 }

2 π z = π 4 \frac { 2\pi }{ z } =\frac { \pi }{ 4 }

π z = π 8 \frac { \pi }{ z } =\frac { \pi }{ 8}

therefore z = 8 z=\boxed{8}

z actually has other solutions, for instance 8/15 and 8/17. Should your question ask for only integer solutions?

Joseph Newton - 3 years, 1 month ago

Log in to reply

yes my bad, its been corrected

Will McGlaughlin - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...