Double Delight

Calculus Level 4

1 0 x ( 1 + x 2 ) ( 1 + x 2 y 2 ) d x d y = π a b \int_{1}^{\infty} \int_{0}^{\infty} \dfrac{x}{(1+x^2)(1+x^2y^2)} \mathrm{d}x \mathrm{d}y=\dfrac{\pi^a}{b}

Find a + b a+b .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
Jan 8, 2015

Changing the order of integration:

0 1 x ( 1 + x 2 ) ( 1 + x 2 y 2 ) d x d y \int_0^\infty \int_1^\infty \frac{x}{(1+x^2)(1+x^2y^2)} \mathrm{d}x\mathrm{d}y

= 0 1 x ( 1 + x 2 ) 1 1 ( y 2 + x 2 ) d y d x =\int_0^\infty \frac{1}{x(1+x^2)} \int_1^\infty\frac1{(y^2+x^{-2})} \mathrm{d}y\mathrm{d}x

= 0 1 x ( 1 + x 2 ) [ x arctan ( x y ) ] y = 1 y d x =\int_0^\infty \frac{1}{x(1+x^2)} [x\arctan(xy)]_{y=1}^{y\rightarrow\infty}\mathrm{d}x

= 0 1 1 + x 2 ( π 2 arctan x ) d x =\int_0^\infty \frac{1}{1+x^2} (\frac{\pi}2-\arctan x)\mathrm{d}x

= [ π 2 arctan x 1 2 ( arctan x ) 2 ] x = 0 x =[\frac{\pi}2\arctan x - \frac12 (\arctan x)^2] _{x=0}^{x\rightarrow\infty}

= ( π 2 ) 2 1 2 ( π 2 ) 2 =\left(\frac{\pi}2\right)^2-\frac12\left(\frac{\pi}2\right)^2

= π 2 8 =\frac{\pi^2}8

Hence a + b = 2 + 8 = 10 a+b=2+8=\boxed{10} .

Slick! +1!

Pratik Shastri - 6 years, 5 months ago

Nice! My method was different and long and tedious and involved logarithmic integral too(which I cheated at the end). *I need help with the log and exp integral. Anybody, please?

Kartik Sharma - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...