Double Equality

Algebra Level 5

Suppose that the following holds for complex numbers a a , b b , and c : c: 1 a + 1 b + 1 c = 1 a b + 1 a c + 1 b c ( a + b ) 2 + ( a + c ) 2 + ( b + c ) 2 = ( a + b c ) 2 + ( b + c a ) 2 + ( c + a b ) 2 . \begin{aligned} \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & = \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} \\\\ (a + b)^2 + (a + c)^2 + (b + c)^2 & = (a + b - c)^2 + (b + c - a)^2 + (c + a - b)^2. \end{aligned}

What is the sum of all possible values of a 2 + b 2 + c 2 ? a^2 + b^2 + c^2?


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 24, 2017

Given { c y c 1 a = c y c 1 a b . . . ( 1 ) c y c ( a + b ) 2 = c y c ( a + b c ) 2 . . . ( 2 ) \begin{cases} \displaystyle \sum_{cyc} \dfrac 1a = \sum_{cyc} \dfrac 1{ab} & ... (1) \\ \displaystyle \sum_{cyc} (a+b)^2 = \sum_{cyc} (a+b-c)^2 & ... (2) \end{cases}

From equation 1:

1 a + 1 b + 1 c = 1 a b + 1 b c + 1 c a a b + b c + c a a b c = a + b + c a b c a b + b c + c a = a + b + c = k \begin{aligned} \frac 1a + \frac 1b + \frac 1c & = \frac 1{ab} +\frac 1{bc} + \frac 1{ca} \\ \frac {ab+bc+ca}{abc} & = \frac {a+b+c}{abc} \\ \implies ab+bc+ca & = a+b+c = \color{#3D99F6} k \end{aligned}

From equation 2:

c y c ( a + b ) 2 = c y c ( a + b c ) 2 = c y c ( ( a + b ) 2 2 c ( a + b ) + c 2 ) c y c c 2 = 2 c y c c ( a + b ) a 2 + b 2 + c 2 = 4 ( a b + b c + c a ) = 4 k \begin{aligned}\sum_{cyc} (a+b)^2 & = \sum_{cyc} (a+b-c)^2 \\ & = \sum_{cyc} \left((a+b)^2-2c(a+b)+c^2 \right) \\ \implies \sum_{cyc} c^2 & = 2 \sum_{cyc} c(a+b) \\ a^2+b^2+c^2 & = 4(ab+bc+ca) = 4\color{#3D99F6}k \end{aligned}

Now we have:

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) k 2 = 4 k + 2 k k ( k 6 ) = 0 k = { 0 6 a 2 + b 2 + c 2 = 4 k = { 0 24 \begin{aligned} (a+b+c)^2 & = a^2+b^2+c^2 + 2(ab+bc+ca) \\ k^2 & = 4k + 2k \\ k(k-6) & = 0 \\ \implies k & = \begin{cases} 0 \\ 6 \end{cases} \\ \implies a^2+b^2+c^2 & = 4k = \begin{cases} 0 \\ 24 \end{cases} \end{aligned}

Therefore, the sum of all possible values of a 2 + b 2 + c 2 a^2+b^2+c^2 is 24 \boxed{24} .

Brian Yao
May 23, 2017

Note that

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + a c + b c ) 1 a + 1 b + 1 c = a b + a c + b c a b c 1 a b + 1 a c + 1 b c = a + b + c a b c ( a + b ) 2 + ( a + c ) 2 + ( b + c ) 2 = 2 ( a 2 + b 2 + c 2 ) + 2 ( a b + a c + b c ) ( a + b c ) 2 + ( b + c a ) 2 + ( c + a b ) 2 = 3 ( a 2 + b 2 + c 2 ) 2 ( a b + a c + b c ) \begin{aligned} (a + b + c)^2 & = a^2 + b^2 + c^2 + 2(ab + ac + bc) \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & = \frac{ab + ac + bc}{abc} \\ \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} & = \frac{a + b + c}{abc} \\ (a + b)^2 + (a + c)^2 + (b + c)^2 & = 2(a^2 + b^2 + c^2) + 2(ab + ac + bc) \\ (a + b - c)^2 + (b + c - a)^2 + (c + a - b)^2 & = 3(a^2 + b^2 + c^2) - 2(ab + ac + bc) \end{aligned}

Since the second and third expressions are equal, a + b + c = a b + a c + b c a + b + c = ab + ac + bc . Substituting into the first equation, we have that ( a b + a c + b c ) 2 2 ( a b + a c + b c ) = a 2 + b 2 + c 2 (ab + ac + bc)^2 - 2(ab + ac + bc) = a^2 + b^2 + c^2 . Since the fourth and fifth expressions are equal, we have a 2 + b 2 + c 2 = 4 ( a b + a c + b c ) a^2 + b^2 + c^2 = 4(ab + ac + bc) . This is a system of two equations and two unknowns, giving solutions a b + a c + b c = 0 , 6 ab + ac + bc = 0,6 and a 2 + b 2 + c 2 = 0 , 24 a^2 + b^2 + c^2 = 0,24 . Hence, the answer is 0 + 24 = 24 0 + 24 = \boxed{24} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...