Γ ( 2 1 ) = π
Using the fact above, find n if π 2 n − 1 ( 2 n − 1 ) Γ ( 2 2 n − 1 ) = 9 9 9 9 ! ! .
Notation:
!
!
denotes the
double factorial
notation. For example,
1
0
!
!
=
1
0
×
8
×
6
×
4
×
2
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Lemma:
π 2 n − 1 ( 2 n − 1 ) Γ ( 2 2 n − 1 ) = ( 2 n − 1 ) ! !
Proof:
Using the property Γ ( s + 1 ) = s Γ ( s ) , we can write
Γ ( 2 2 n − 1 ) = ( 2 2 n − 3 ) Γ ( 2 2 n − 3 ) = ( 2 2 n − 3 ) ( 2 2 n − 5 ) Γ ( 2 2 n − 5 ) ⋮ = 2 n − 1 ( 2 n − 3 ) ! ! Γ ( 2 1 ) = 2 n − 1 ( 2 n − 3 ) ! ! π
Thus
π 2 n − 1 ( 2 n − 1 ) Γ ( 2 2 n − 1 ) = π 2 n − 1 ( 2 n − 1 ) ⋅ 2 n − 1 ( 2 n − 3 ) ! ! π = ( 2 n − 1 ) ! ! Q . E . D .
So for our problem
( 2 n − 1 ) ! ! = 9 9 9 9 ! ! ⟹ n = 5 0 0 0
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Gamma Function
Since Γ ( 2 1 ) = π we have that
Γ ( 2 3 ) = Γ ( 1 + 2 1 ) = 2 1 Γ ( 2 1 ) = 2 1 π Γ ( 2 5 ) = Γ ( 1 + 2 3 ) = 2 3 Γ ( 2 3 ) = 2 × 2 3 × 1 π Γ ( 2 7 ) = Γ ( 1 + 2 5 ) = 2 5 Γ ( 2 5 ) = 2 × 2 × 2 5 × 3 × 1 π ⋮ Γ ( 2 2 n + 1 ) = Γ ( 1 + 2 2 n − 1 ) = 2 2 n − 1 Γ ( 2 2 n − 1 ) = n 2 ′ s 2 × 2 × ⋯ × 2 × 2 ( 2 n − 1 ) × ( 2 n − 3 ) × ⋯ × 3 × 1 π ⟹ 2 2 n − 1 Γ ( 2 2 n − 1 ) = 2 n ( 2 n − 1 ) ! ! π ∴ ( 2 n − 1 ) ! ! = π 2 n − 1 ( 2 n − 1 ) Γ ( 2 2 n − 1 ) So ( 2 n − 1 ) ! ! = 9 9 9 9 ! ! ⟹ 2 n − 1 = 9 9 9 9 ∴ n = 5 0 0 0 .