Is this enough information?

Calculus Level 5

Γ ( 1 2 ) = π \Gamma{\left(\dfrac{1}{2}\right)} = \sqrt{\pi}

Using the fact above, find n n if 2 n 1 ( 2 n 1 ) π Γ ( 2 n 1 2 ) = 9999 ! ! \dfrac{2^{n-1}(2n-1)}{\sqrt{\pi}}\Gamma{\left(\dfrac{2n-1}{2}\right)} = 9999!! .


Notation: ! ! !! denotes the double factorial notation. For example, 10 ! ! = 10 × 8 × 6 × 4 × 2 10!!=10\times8\times6\times4\times2 .


The answer is 5000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akeel Howell
Apr 2, 2017

Relevant wiki: Gamma Function

Since Γ ( 1 2 ) = π \Gamma{\left(\dfrac{1}{2}\right)} = \sqrt{\pi} we have that

Γ ( 3 2 ) = Γ ( 1 + 1 2 ) = 1 2 Γ ( 1 2 ) = 1 2 π Γ ( 5 2 ) = Γ ( 1 + 3 2 ) = 3 2 Γ ( 3 2 ) = 3 × 1 2 × 2 π Γ ( 7 2 ) = Γ ( 1 + 5 2 ) = 5 2 Γ ( 5 2 ) = 5 × 3 × 1 2 × 2 × 2 π Γ ( 2 n + 1 2 ) = Γ ( 1 + 2 n 1 2 ) = 2 n 1 2 Γ ( 2 n 1 2 ) = ( 2 n 1 ) × ( 2 n 3 ) × × 3 × 1 2 × 2 × × 2 × 2 n 2 s π 2 n 1 2 Γ ( 2 n 1 2 ) = ( 2 n 1 ) ! ! 2 n π ( 2 n 1 ) ! ! = 2 n 1 ( 2 n 1 ) π Γ ( 2 n 1 2 ) So ( 2 n 1 ) ! ! = 9999 ! ! 2 n 1 = 9999 n = 5000 \Gamma{\left(\dfrac{3}{2}\right)} = \Gamma{\left(1+\dfrac{1}{2}\right)} = \dfrac{1}{2}\Gamma{\left(\dfrac{1}{2}\right)} = \dfrac{1}{2}\sqrt{\pi} \\ \Gamma{\left(\dfrac{5}{2}\right)} = \Gamma{\left(1+\dfrac{3}{2}\right)} = \dfrac{3}{2}\Gamma{\left(\dfrac{3}{2}\right)} = \dfrac{3 \times 1}{2 \times 2}\sqrt{\pi} \\ \Gamma{\left(\dfrac{7}{2}\right)} = \Gamma{\left(1+\dfrac{5}{2}\right)} = \dfrac{5}{2}\Gamma{\left(\dfrac{5}{2}\right)} = \dfrac{5 \times 3 \times 1}{2 \times 2 \times 2}\sqrt{\pi} \\ \vdots \\ \Gamma{\left(\dfrac{2n+1}{2}\right)} = \Gamma{\left(1+\dfrac{2n-1}{2}\right)} = \dfrac{2n-1}{2}\Gamma{\left(\dfrac{2n-1}{2}\right)} = \dfrac{(2n-1) \times (2n-3) \times \cdots \times 3 \times 1}{\underbrace{2 \times 2 \times \cdots \times 2 \times 2}_{n \space \space 2's}}\sqrt{\pi} \\ \implies \dfrac{2n-1}{2}\Gamma{\left(\dfrac{2n-1}{2}\right)} = \dfrac{(2n-1)!!}{2^n}\sqrt{\pi} \\ \therefore (2n-1)!! = \dfrac{2^{n-1}(2n-1)}{\sqrt{\pi}}\Gamma{\left(\dfrac{2n-1}{2}\right)} \\ \text{So } \ (2n-1)!! = 9999!! \implies 2n-1 = 9999 \\ \therefore n = \ \boxed{5000} .

Tapas Mazumdar
Apr 7, 2017

Lemma:

2 n 1 ( 2 n 1 ) π Γ ( 2 n 1 2 ) = ( 2 n 1 ) ! ! \dfrac{2^{n-1} (2n-1)}{\sqrt{\pi}} \Gamma \left( \dfrac{2n-1}{2} \right) = (2n-1)!!

Proof:

Using the property Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1) = s \Gamma(s) , we can write

Γ ( 2 n 1 2 ) = ( 2 n 3 2 ) Γ ( 2 n 3 2 ) = ( 2 n 3 2 ) ( 2 n 5 2 ) Γ ( 2 n 5 2 ) = ( 2 n 3 ) ! ! 2 n 1 Γ ( 1 2 ) = ( 2 n 3 ) ! ! 2 n 1 π \begin{aligned} \Gamma \left( \dfrac{2n-1}{2} \right) &= \left( \dfrac{2n-3}{2} \right) \Gamma \left( \dfrac{2n-3}{2} \right) & \\ &= \left( \dfrac{2n-3}{2} \right) \left( \dfrac{2n-5}{2} \right) \Gamma \left( \dfrac{2n-5}{2} \right) & \\ & \qquad \qquad \qquad \vdots & \\ &= \dfrac{(2n-3)!!}{2^{n-1}} \Gamma \left( \dfrac 12 \right) & \\ &= \dfrac{(2n-3)!!}{2^{n-1}} \sqrt{\pi} & \end{aligned}

Thus

2 n 1 ( 2 n 1 ) π Γ ( 2 n 1 2 ) = 2 n 1 ( 2 n 1 ) π ( 2 n 3 ) ! ! 2 n 1 π = ( 2 n 1 ) ! ! Q . E . D . \begin{aligned} & \dfrac{2^{n-1} (2n-1)}{\sqrt{\pi}} \Gamma \left( \dfrac{2n-1}{2} \right) = \dfrac{2^{n-1} (2n-1)}{\sqrt{\pi}} \cdot \dfrac{(2n-3)!!}{2^{n-1}} \sqrt{\pi} = (2n-1)!! & & \\ & & & \mathbf{Q.E.D.} \end{aligned}

So for our problem

( 2 n 1 ) ! ! = 9999 ! ! n = 5000 (2n-1)!! = 9999!! \implies n = \boxed{5000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...