Double Gaussian Integral

Calculus Level 5

e ( x 2 + x y + y 2 ) d x d y = a π b \displaystyle \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} e^{-\left( x^2+xy+y^2 \right)} dxdy = \frac{a\pi}{\sqrt b}

Evaluate a + b a+b where b b is square free.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 11, 2018

Note the standard integral e u x 2 d x = π u \int_{-\infty}^\infty e^{-ux^2}\,dx \; = \; \sqrt{\tfrac{\pi}{u}} Then e x 2 x y y 2 d x = e ( x + 1 2 y ) 2 3 4 y 2 d x = π e 3 4 y 2 \int_{-\infty}^\infty e^{-x^2-xy-y^2}\,dx \; = \; \int_{-\infty}^\infty e^{-(x+\frac12y)^2 - \frac34y^2}\,dx \; = \; \sqrt{\pi}e^{-\frac34y^2} so that the double integral is π e 3 4 y 2 d y = 2 π 3 \int_{\infty}^\infty \sqrt{\pi} e^{-\frac34y^2}\,dy \; = \; \frac{2\pi}{\sqrt{3}} making the answer 2 + 3 = 5 2+3=\boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...