Double Infinite Series

Calculus Level 2

x = 0 y = 0 2 x y 1 + x + y = ? \large \sum _{x= 0}^\infty \sum _{y= 0}^\infty \frac {2^{-x-y}}{1+x+y} = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 24, 2017

S = x = 0 y = 0 2 x y 1 + x + y = x = 0 2 x 1 + x y = 0 + x = 0 2 x 1 2 + x y = 1 + x = 0 2 x 2 3 + x y = 2 + = x = 0 2 x 1 + x + x = 1 2 x 1 + x + x = 2 2 x 1 + x + = x = 0 ( x + 1 ) 2 x 1 + x = x = 0 2 x = 1 1 1 2 = 2 \begin{aligned} S & = \sum_{x=0}^\infty \sum_{y=0}^\infty \frac {2^{-x-y}}{1+x+y} \\ & = \underbrace{\sum_{x=0}^\infty \frac {2^{-x}}{1+x}}_{y=0} + \underbrace{\sum_{\color{#3D99F6}x=0}^\infty \frac {2^{-x-1}}{2+x}}_{y=1} + \underbrace{\sum_{\color{#3D99F6}x=0}^\infty \frac {2^{-x-2}}{3+x}}_{y=2} + \cdots \\ & = \sum_{x=0}^\infty \frac {2^{-x}}{1+x} + \sum_{\color{#D61F06}x=1}^\infty \frac {2^{-x}}{1+x} + \sum_{\color{#D61F06}x=2}^\infty \frac {2^{-x}}{1+x} + \cdots \\ & = \sum_{x=0}^\infty \frac {(x+1) 2^{-x}}{1+x} \\ & = \sum_{x=0}^\infty 2^{-x} \\ & = \frac 1{1-\frac 12} \\ & = \boxed{2} \end{aligned}

Better than my solution.

Tiger Ang - 3 years, 8 months ago

Let the sum be S = x , y 0 2 ( x + y ) 1 + x + y \displaystyle S=\sum_{x,y \ge 0} \dfrac{2^{-(x+y)}}{1+x+y} , substituting x + y = k x+y=k we have :

S = k = 0 2 k = 2 \displaystyle S= \sum_{k=0}^\infty 2^{-k} =2 and thus the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...