∫ 0 1 ∫ 0 1 1 − x x y − y + 1 y arcsin ( 1 − x y ) d x d y
Evaluate the double integral above. If the answer comes in the form of − b a ζ ( 3 ) + d c π 2 ln 2 , where g cd ( a , b ) = 1 and g cd ( c , d ) = 1 , then find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The substitution p = ( 1 − x ) y gives ∫ 0 1 1 − x x y − y + 1 y sin − 1 ( 1 − x ) y d y = 1 − x 2 ∫ 0 1 − x 1 − p 2 sin − 1 p d p = 1 − x 1 [ ( sin − 1 p ) 2 ] 0 1 − x = 1 − x ( sin − 1 1 − x ) 2 and so the integral I = ∫ 0 1 ∫ 0 1 1 − x x y − y + 1 y sin − 1 ( 1 − x ) y d x d y = ∫ 0 1 1 − x ( sin − 1 1 − x ) 2 d x = ∫ 0 1 x ( sin − 1 x ) 2 d x = 2 ∫ 0 2 1 π q 2 cot q d q = − 4 ∫ 0 2 1 π q ln ( sin q ) d q using the substitution q = sin − 1 x and integration by parts. But then I = − 4 ( 1 6 7 ζ ( 3 ) − 8 1 π 2 ln 2 ) = 2 1 π 2 ln 2 − 4 7 ζ ( 3 ) using a result of Euler to evaluate this last integral. This makes the answer 7 + 4 + 1 + 2 = 1 4 .