Double Integral

Calculus Level 5

0 1 0 1 arcsin ( 1 x y ) 1 x x y y + 1 y d x d y \large \int_{0}^{1} \int_{0}^{1} \frac{ \arcsin( \sqrt{1-x} \sqrt{y})}{\sqrt{1-x} \sqrt{xy-y+1} \sqrt{y} } \; dx \; dy

Evaluate the double integral above. If the answer comes in the form of a b ζ ( 3 ) + c d π 2 ln 2 -\dfrac{a}{b} \zeta(3) + \dfrac{c}{d} \pi^2 \ln 2 , where gcd ( a , b ) = 1 \gcd (a,b)=1 and gcd ( c , d ) = 1 \gcd (c,d)=1 , then find a + b + c + d a+b+c+d .

Also try


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 23, 2017

The substitution p = ( 1 x ) y p = \sqrt{(1-x)y} gives 0 1 sin 1 ( 1 x ) y 1 x x y y + 1 y d y = 2 1 x 0 1 x sin 1 p 1 p 2 d p = 1 1 x [ ( sin 1 p ) 2 ] 0 1 x = ( sin 1 1 x ) 2 1 x \begin{aligned} \int_0^1 \frac{\sin^{-1}\sqrt{(1-x)y}}{\sqrt{1-x}\sqrt{xy-y+1}\sqrt{y}}\,dy & = \frac{2}{1-x}\int_0^{\sqrt{1-x}}\frac{\sin^{-1}p}{\sqrt{1-p^2}}\,dp \\ & = \frac{1}{1-x}\Big[\big(\sin^{-1}p\big)^2\Big]_0^{\sqrt{1-x}} \; = \; \frac{\big(\sin^{-1}\sqrt{1-x}\big)^2}{1-x} \end{aligned} and so the integral I = 0 1 0 1 sin 1 ( 1 x ) y 1 x x y y + 1 y d x d y = 0 1 ( sin 1 1 x ) 2 1 x d x = 0 1 ( sin 1 x ) 2 x d x = 2 0 1 2 π q 2 cot q d q = 4 0 1 2 π q ln ( sin q ) d q \begin{aligned} I \; = \; \int_0^1 \int_0^1 \frac{\sin^{-1}\sqrt{(1-x)y}}{\sqrt{1-x}\sqrt{xy-y+1}\sqrt{y}}\,dx\,dy & = \int_0^1 \frac{\big(\sin^{-1}\sqrt{1-x}\big)^2}{1-x}\,dx \; = \; \int_0^1 \frac{\big(\sin^{-1}\sqrt{x}\big)^2}{x}\,dx \\ & = 2\int_0^{\frac12\pi} q^2 \cot q\,dq \; = \; -4\int_0^{\frac12\pi} q\ln(\sin q)\,dq \end{aligned} using the substitution q = sin 1 x q = \sin^{-1}\sqrt{x} and integration by parts. But then I = 4 ( 7 16 ζ ( 3 ) 1 8 π 2 ln 2 ) = 1 2 π 2 ln 2 7 4 ζ ( 3 ) I \; = \; -4\Big(\tfrac{7}{16}\zeta(3) - \tfrac18\pi^2\ln2\Big) \; = \; \tfrac12\pi^2\ln2 - \tfrac74\zeta(3) using a result of Euler to evaluate this last integral. This makes the answer 7 + 4 + 1 + 2 = 14 7+4+1+2= \boxed{14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...