Double Integral For Days

Calculus Level 3

0 1 0 1 ( ( x 1 ) e y ln x n = 0 2018 x n ) d x d y \int _0^1 \int _0^1\left( \frac {(x-1)e^y}{\ln x} \sum _{ n=0 }^{2018} x^n \right) dx \ dy

Evaluate the integral above. Round off your final answer to the closest integer.

10 15 12 11 13 14

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 30, 2018

I = 0 1 0 1 ( ( x 1 ) e y ln x n = 0 2018 x n ) d x d y = 0 1 e y d y 0 1 ( x 1 ln x n = 0 2018 x n ) d x = e y 0 1 0 1 x 1 ln x x 2019 1 x 1 d x = ( e 1 ) 0 1 x 2019 1 ln x d x See note, = ( e 1 ) ln ( 2020 ) 13 \begin{aligned} I & = \int_0^1 \int_0^1 \left(\frac {(x-1)e^y}{\ln x}\sum_{n=0}^{2018} x^n \right)dx \ dy \\ & = \int_0^1 e^y \ dy \cdot \int_0^1 \left(\frac {x-1}{\ln x}\sum_{n=0}^{2018} x^n \right)dx \\ & = e^y \bigg|_0^1 \cdot \int_0^1 \frac {x-1}{\ln x}\cdot \frac {x^{2019}-1}{x-1} dx \\ & = (e-1) \color{#3D99F6} \int_0^1 \frac {x^{2019}-1}{\ln x} dx & \small \color{#3D99F6} \text{See note,} \\ & = (e-1) \color{#3D99F6} \ln (2020) \\ & \approx \boxed{13} \end{aligned}


Note:

J ( a ) = 0 1 x a 1 ln x d x J ( a ) a = 0 1 x a ln x ln x d x = 0 1 x a d x = x a + 1 a + 1 0 1 = 1 a + 1 J ( a ) = 1 a + 1 d a = ln ( a + 1 ) + C where C is the constant of integration. J ( 0 ) = ln ( 0 + 1 ) + C = 0 C = 0 J ( a ) = ln ( a + 1 ) J ( 2019 ) = ln ( 2020 ) \begin{aligned} J(a) & = \int_0^1 \frac {x^a - 1}{\ln x} dx \\ \frac {\partial J(a)}{\partial a} & = \int_0^1 \frac {x^a\ln x}{\ln x} dx = \int_0^1 x^a \ dx = \frac {x^{a+1}}{a+1} \bigg|_0^1 = \frac 1{a+1} \\ \implies J(a) & = \int \frac 1{a+1} da = \ln (a+1) +\color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ J(0) & = \ln (0+1) + C = 0 & \small \color{#3D99F6} \implies C = 0 \\ \implies J(a) & = \ln(a+1) \\ J(2019) & = \ln (2020) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...