My Double Integrals!

Calculus Level 3

0 1 2 0 1 2 y x y d x d y \large \displaystyle \int_0^{\frac {1}{2} } \int_0^{1-2y} xy \ \mathrm d x \ \mathrm d y

If the above integral is in the form of a b \frac {a}{b} for coprime positive integers, a , b a,b . Find the value of a + b a+b .

Image Credit: Wikimedia Volume under surface by Oleg Alexandrov


The answer is 97.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Nigam
Mar 20, 2015

0 1 2 ( 0 1 2 y x y d x ) d y 0 1 2 [ y x 2 2 ] 0 1 2 y d y 0 1 2 y ( 1 2 y ) 2 2 d y 0 1 2 ( y 2 2 y 2 + 2 y 3 ) d y [ y 2 4 2 y 3 3 + y 4 2 ] 0 1 2 1 16 1 12 + 1 32 = 1 96 = a b a = 1 , b = 96 a + b = 97 \displaystyle\int_0^\frac{1}{2}\left (\displaystyle\int_0^{1-2y} xy \mathrm dx\right ) \mathrm dy\\\displaystyle\int_0^\frac{1}{2}\left [y\frac{x^2}{2}\right ]_0^{1-2y} \mathrm dy\\ \displaystyle\int_0^\frac{1}{2} y\frac{(1-2y)^2}{2}\mathrm dy\\ \displaystyle\int_0^\frac{1}{2} \left (\frac{y}{2}-2y^2+2y^3\right )\mathrm dy\\\left [\frac{y^2}{4}-\frac{2y^3}{3}+\frac{y^4}{2}\right ]_0^\frac{1}{2}\\\frac{1}{16}-\frac{1}{12}+\frac{1}{32}=\frac{1}{96}=\frac{a}{b}\\a=1,b=96\Rightarrow a+b=97

I have converted your pic to text. Can you look at it once for accuracy?

Pranjal Jain - 6 years, 2 months ago

Log in to reply

it's perfect....

Ankit Nigam - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...