Calculate ∬ B ( x − y ) d y d x , where B is a Semicircle x 2 + y 2 ≤ 1 , x ≥ 0 , Can be Written as b a Where a and b are coprime positive integers.
Find a+b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
B is the region between x = 0 and x = 1 − y 2 for − 1 ≤ y ≤ 1 . Therefore ∫ y = − 1 1 ∫ x = 0 1 − y 2 ( x − y ) d x d y = ∫ y = − 1 1 [ 2 1 x 2 − y x ] x = 0 1 − y 2 d y = ∫ y = − 1 1 ( 2 1 ( 1 − y 2 ) − y 1 − y 2 ) d y = [ 2 1 y − 6 1 y 3 + 3 1 ( 1 − y 2 ) 2 3 ] y = − 1 1 = 1 − 3 1 + 0 = 3 2 Thus, a = 2 , b = 3 and a + b = 5 . # Q . E . D . #
Problem Loading...
Note Loading...
Set Loading...
we change the integral to the polar coordinate as the following: x = r c o s ϕ and y = r s i n ϕ
Because the domain is the semi circle, then we have r : 0 → 1 , ϕ : − 2 π → 2 π and d x d y = r d r d ϕ The integral becomes ∫ ∫ D r 2 ( c o s ϕ − s i n ϕ ) d r d ϕ = ( ∫ 0 1 r 2 d r ) ⋅ ( ∫ − 2 π 2 π ( c o s ϕ − s i n ϕ ) ) = 3 r 3 ∣ 0 1 ( s i n ϕ + c o s ϕ ) ∣ − 2 π 2 π = 3 2