Double Integrals - Calculus

Level 2

Calculate B ( x y ) d y d x \iint_{B} (x-y) dy dx , where B B is a Semicircle x 2 + y 2 1 x ^ 2 + y ^ 2 \leq 1 , x 0 x \geq 0 , Can be Written as a b \frac{a}{b} Where a and b are coprime positive integers.

Find a+b


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nam Diện Lĩnh
May 26, 2014

we change the integral to the polar coordinate as the following: x = r c o s ϕ x=rcos\phi and y = r s i n ϕ y=rsin\phi

Because the domain is the semi circle, then we have r : 0 1 r:0\to 1 , ϕ : π 2 π 2 \phi:-\frac{\pi}{2}\to\frac{\pi}{2} and d x d y = r d r d ϕ dxdy=rdrd\phi The integral becomes D r 2 ( c o s ϕ s i n ϕ ) d r d ϕ = ( 0 1 r 2 d r ) ( π 2 π 2 ( c o s ϕ s i n ϕ ) ) = r 3 3 0 1 ( s i n ϕ + c o s ϕ ) π 2 π 2 = 2 3 \int\int_Dr^2(cos\phi-sin\phi)drd\phi=(\int_0^1r^2dr)\cdot(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(cos\phi-sin\phi))=\frac{r^3}{3}|_0^1(sin\phi+cos\phi)|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{2}{3}

Tunk-Fey Ariawan
Jan 29, 2014

B B is the region between x = 0 x=0 and x = 1 y 2 x=\sqrt{1-y^2} for 1 y 1 -1 \le y \le 1 . Therefore y = 1 1 x = 0 1 y 2 ( x y ) d x d y = y = 1 1 [ 1 2 x 2 y x ] x = 0 1 y 2 d y = y = 1 1 ( 1 2 ( 1 y 2 ) y 1 y 2 ) d y = [ 1 2 y 1 6 y 3 + 1 3 ( 1 y 2 ) 3 2 ] y = 1 1 = 1 1 3 + 0 = 2 3 \begin{aligned} \int_{y=-1}^1 \int_{x=0}^{\sqrt{1-y^2}} (x-y)\, dxdy &= \int_{y=-1}^1 \left[\frac{1}{2}x^2-yx\right]_{x=0}^{\sqrt{1-y^2}}\, dy\\ &= \int_{y=-1}^1 \left(\frac{1}{2}(1-y^2)-y\sqrt{1-y^2}\right)\, dy\\ &= \left[\frac{1}{2}y-\frac{1}{6}y^3+\frac{1}{3}(1-y^2)^\frac{3}{2}\right]_{y\,=-1}^1\\ &=1-\frac{1}{3}+0\\ &=\frac{2}{3} \end{aligned} Thus, a = 2 a=2 , b = 3 b=3 and a + b = 5 a+b = \boxed{5} . # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...