Double Integrals? Double the Fun.

Calculus Level 4

Let N = R ( x 2 + y 2 ) d A N = \iint_R (x^2 + y^2)\ dA over the triangle with vertices ( 0 , 0 ) , ( 2 , 2 ) , ( 4 , 0 ) (0,0), (2,2), (4,0) . If N = a b N = \frac{a}{b} , where a a and b b are coprime positive integers, what is the value of a + b a+b ?


The answer is 67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

The triangle is bounded by the lines y = 0 y = 0 , y = x y=x and y = 4 x y = 4-x , so we have

R ( x 2 + y 2 ) d A = 0 2 x = y x = 4 y ( x 2 + y 2 ) d x d y = 0 2 [ x 3 3 + x y 2 ] x = y x = 4 y d y = 0 2 [ 8 y 3 3 + 8 y 2 16 y + 64 3 ] d y = [ 2 y 4 3 + 8 y 3 3 8 y 2 + 64 y 3 ] 0 2 = 64 3 \begin{aligned} \iint_R (x^2 + y^2)\ dA &= \int_0^2 \int_{x=y}^{x=4-y} (x^2 + y^2)\ dx\ dy \\ &= \int_0^2 \left[\frac{x^3}{3} + xy^2\right]_{x=y}^{x=4-y}\ dy \\ &= \int_0^2 \left[\frac{-8y^3}{3} + 8y^2 - 16y + \frac{64}{3} \right]\ dy \\ &= \left[\frac{-2y^4}{3} + \frac{8y^3}{3} - 8y^2 + \frac{64y}{3} \right]_0^2 \\ &= \frac{64}{3} \\ \end{aligned}

Hence a + b = 64 + 3 = 67 a + b = 64 + 3 = 67 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...