Double Integrity!

Calculus Level 2

y = 1 2 x = 0 3 ( 1 + 8 x y ) d x d y = ? \huge \int _{ y=1 }^{ 2 } \int _{ x=0 }^{ 3 } (1+8xy) \, dx \, dy = \, ?


The answer is 57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 18, 2016

1 2 0 3 ( 1 + 8 x y ) d x d y = 1 2 [ x + 4 x 2 y ] 0 3 d y = 1 2 ( 3 + 36 y ) d y = [ 3 y + 18 y 2 ] 1 2 = 6 + 72 3 18 = 57 \begin{aligned} \int_1^2 \int_0^3 (1+8xy)dxdy & = \int_1^2 \left[x+4x^2y\right]_0^3 dy \\ & = \int_1^2 \left(3+36y\right) dy \\ & = \left[3y + 18y^2\right]_1^2 \\ & = 6 + 72 - 3 - 18 \\ & = \boxed{57} \end{aligned}

Moderator note:

Simple standard approach.

Aareyan Manzoor
Mar 18, 2016

1 2 0 3 ( 1 + 8 x y ) d x d y = 1 2 0 3 1 d x d y + 1 2 0 3 8 x y d x d y = 1 2 0 3 d x d y + 8 1 2 0 3 x y d x d y = 1 2 d x 0 3 d y + 8 1 2 x d x 0 3 y d y = ( 1 ) ( 3 ) + 8 ( 3 2 ) ( 9 2 ) = 3 + 54 = 57 \int_1^2\int_0^3 (1+8xy)dxdy\\=\int_1^2\int_0^3 1 dxdy+\int_1^2\int_0^3 8xy dxdy\\= \int_1^2\int_0^3 dxdy+8\int_1^2\int_0^3xy dxdy\\=\int_1^2 dx\int_0^3dy+8\int_1^2 xdx\int_0^3ydy\\=(1)(3)+8\left(\dfrac{3}{2}\right)\left(\dfrac{9}{2}\right)\\=3+54\\=\boxed{57}

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...