Double Laps 2018!

Algebra Level 3

Let

f ( r ) = j = 2 2018 1 j r \large\ f\left( r \right) = \sum _{ j=2 }^{ 2018 }{ \frac { 1 }{ { j }^{ r } } }

Find

k = 2 f ( k ) \large\ \sum _{ k=2 }^{ \infty }{ f\left( k \right) }


The answer is 0.99950.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 24, 2018

k = 2 f ( k ) = k = 2 j = 2 2018 1 j k = j = 2 2018 k = 2 1 j k = j = 2 2018 1 j 2 ( 1 1 1 j ) = j = 2 2018 1 j ( j 1 ) = j = 2 2018 ( 1 j 1 1 j ) = 1 1 2017 0.99950 \begin{aligned} \sum_{k=2}^\infty f(k) & = \sum_{k=2}^\infty \sum_{j=2}^{2018} \frac 1{j^k} = \sum_{j=2}^{2018} \sum_{k=2}^\infty \frac 1{j^k} = \sum_{j=2}^{2018} \frac 1{j^2} \left(\frac 1{1-\frac 1j}\right) \\ & = \sum_{j=2}^{2018} \frac 1{j(j-1)} = \sum_{j=2}^{2018} \left(\frac 1{j-1} - \frac 1j\right) \\ & = 1-\frac 1{2017} \approx \boxed{0.99950} \end{aligned}

X X
May 24, 2018

k = 2 f ( k ) = ( 1 2 2 + 1 3 2 + 1 4 2 + . . . + 1 201 8 2 ) + ( 1 2 3 + 1 3 3 + 1 4 3 + . . . + 1 201 8 3 ) + ( 1 2 4 + 1 3 4 + 1 4 4 + . . . + 1 201 8 4 ) + . . . \sum _{ k=2 }^{ \infty }{ f\left( k \right) } =(\frac1{2^2}+\frac1{3^2}+\frac1{4^2}+...+\frac1{2018^2})+(\frac1{2^3}+\frac1{3^3}+\frac1{4^3}+...+\frac1{2018^3})+(\frac1{2^4}+\frac1{3^4}+\frac1{4^4}+...+\frac1{2018^4})+... = ( 1 2 2 + 1 2 3 + 1 2 4 + . . . ) + ( 1 3 2 + 1 3 3 + 1 3 4 + . . . ) + ( 1 4 2 + 1 4 3 + 1 4 4 + . . . ) + . . . + ( 1 201 8 2 + 1 201 8 3 + 1 201 8 4 + . . . ) =(\frac1{2^2}+\frac1{2^3}+\frac1{2^4}+...)+(\frac1{3^2}+\frac1{3^3}+\frac1{3^4}+...)+(\frac1{4^2}+\frac1{4^3}+\frac1{4^4}+...)+...+(\frac1{2018^2}+\frac1{2018^3}+\frac1{2018^4}+...) = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + . . . + 1 2017 × 2018 =\frac1{1\times2}+\frac1{2\times3}+\frac1{3\times4}+...+\frac1{2017\times2018} = 1 1 2 + 1 2 1 3 + 1 3 1 4 + . . . + 1 2017 1 2018 =1-\frac12+\frac12-\frac13+\frac13-\frac14+...+\frac1{2017}-\frac1{2018} = 2017 2018 =\frac{2017}{2018}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...