Double limit problem

Calculus Level 3

a n = k = 1 n k 2 k \large a_n = \sum_{k = 1}^{n} \frac{k}{2^k}

For a n a_n as defined above, what are the values of lim n ( 2 n ( 2 a n ) n + 1 ) ( n + 1 ) \displaystyle \lim_{n \to \infty} \left(\frac{2^n(2 - a_n)}{n + 1}\right)^{(n + 1)} and lim n a n \displaystyle \lim_{n \rightarrow \infty} a_n ?

1 1 and e 2 e^2 e e and 2 2 e 2 e^2 and l n 2 ln 2 0 and l n 2 ln 2 \infty and e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a n = 1 2 1 + 2 2 2 + 3 2 3 + 4 2 4 + + n 2 n 2 a n = 1 + 2 2 + 3 2 2 + 4 2 3 + + n 2 n 1 ( 2 a n a n ) = 1 + 1 2 + 1 2 2 + 1 2 3 + + 1 2 n 1 n 2 n a n = 1 1 2 n 1 1 2 n 2 n = 2 1 2 n 1 n 2 n \begin{aligned} a_n & = \frac 1{2^1} + \frac 2{2^2} + \frac 3{2^3} + \frac 4{2^4} + \cdots + \frac n{2^n} \\ 2 a_n & = 1 + \frac 22 + \frac 3{2^2} + \frac 4{2^3} + \cdots + \frac n{2^{n-1}} \\ (2a_n - a_n) & = 1 + \frac 12 + \frac 1{2^2} + \frac 1{2^3} + \cdots + \frac 1{2^{n-1}} - \frac n{2^n} \\ \implies a_n & = \frac {1-\frac 1{2^n}}{1-\frac 12} - \frac n{2^n} \\ & = 2 - \frac 1{2^{n-1}} - \frac n{2^n} \end{aligned}

Then, we have:

lim n ( 2 n ( 2 a n ) n + 1 ) n + 1 = lim n ( 2 n ( 2 2 + 2 n + 1 + n 2 n ) n + 1 ) n + 1 = lim n ( n + 2 n + 1 ) n + 1 = lim n ( 1 + 1 n + 1 ) n + 1 = e \begin{aligned} \lim_{n \to \infty} \left(\frac {2^n(2-a_n)}{n+1}\right)^{n+1} & = \lim_{n \to \infty} \left(\frac {2^n\left(2-2+2^{-n+1} + n2^{-n}\right)}{n+1}\right)^{n+1} \\ & = \lim_{n \to \infty} \left(\frac {n+2}{n+1} \right)^{n+1} \\ & = \lim_{n \to \infty} \left(1+\frac 1{n+1} \right)^{n+1} \\ & = e \end{aligned}

lim n a n = lim n ( 2 1 2 n 1 n 2 n ) A / case, L’H o ˆ pital’s rule applies. = 2 0 lim n 1 2 n ln 2 Differentiate up and down w.r.t. n . = 2 0 \begin{aligned} \lim_{n \to \infty} a_n & = \lim_{n \to \infty} \left(2 - \frac 1{2^{n-1}} - \color{#3D99F6} \frac n{2^n}\right) & \small \color{#3D99F6} \text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = 2 - 0 - \lim_{n \to \infty} \color{#3D99F6} \frac 1{2^n\ln 2} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }n. \\ & = 2 - \color{#3D99F6} 0 \end{aligned}

Therefore the answer is e e and 2 2 .

Icaro Buscarini
Sep 6, 2018

Solution:

a n = k = 1 n k 2 k = k = 1 n i = k n 1 2 i = k = 1 n i = k n ( 1 2 i 1 1 2 i ) = k = 1 n ( 1 2 k 1 1 2 n ) = k = 1 n 1 2 k 1 n 2 n a_n = \sum_{k = 1}^{n} \frac{k}{2^k} = \sum_{k = 1}^{n}\sum_{i = k}^{n} \frac{1}{2^i} = \sum_{k = 1}^{n}\sum_{i = k}^{n} \left( \frac{1}{2^{i - 1}} - \frac{1}{2^i} \right) = \sum_{k = 1}^{n} \left( \frac{1}{2^{k - 1}} - \frac{1}{2^n} \right) = \sum_{k = 1}^{n} \frac{1}{2^{k - 1}} - \frac{n}{2^n}

= 2 k = 1 n 1 2 k n 2 n = 2 ( ( 1 2 ) n + 1 ) n 2 n = 2 n + 2 2 n = 2\sum_{k = 1}^{n} \frac{1}{2^{k}} - \frac{n}{2^n} = 2\left( -\left(\frac{1}{2}\right)^n + 1\right) - \frac{n}{2^n} = 2 - \frac{n + 2}{2^n} . So a n = 2 n + 2 2 n a_n = 2 - \frac{n + 2}{2^n} .

the limit of a n a_n is given by:

lim n a n = lim n ( 2 n + 2 2 n ) = 2 lim n ( n + 2 2 n ) = 2 lim n ( 1 2 n l n 2 ) = 2 \lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \left(2 - \frac{n + 2}{2^n}\right) = 2 - \lim_{n \rightarrow \infty} \left(\frac{n + 2}{2^n}\right) = 2 - \lim_{n \rightarrow \infty} \left(\frac{1}{2^n ln 2}\right) = 2 . follow that lim n a n = 2 \lim_{n \rightarrow \infty} a_n = 2 .

lim n ( 2 n ( 2 a n ) n + 1 ) ( n + 1 ) = lim n ( 2 n ( 2 ( 2 n + 2 2 n ) ) n + 1 ) ( n + 1 ) = lim n ( n + 2 n + 1 ) ( n + 1 ) = lim n ( 1 + 1 n + 1 ) ( n + 1 ) = e \lim_{n \rightarrow \infty} \left(\frac{2^n(2 - a_n)}{n + 1}\right)^{(n + 1)} = \lim_{n \rightarrow \infty} \left(\frac{2^n\left(2 - \left(2 - \frac{n + 2}{2^n}\right)\right)}{n + 1}\right)^{(n + 1)} = \lim_{n \rightarrow \infty} \left(\frac{n + 2}{n + 1}\right)^{(n + 1)} = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n + 1}\right)^{(n + 1)} = e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...