a n = k = 1 ∑ n 2 k k
For a n as defined above, what are the values of n → ∞ lim ( n + 1 2 n ( 2 − a n ) ) ( n + 1 ) and n → ∞ lim a n ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution:
a n = ∑ k = 1 n 2 k k = ∑ k = 1 n ∑ i = k n 2 i 1 = ∑ k = 1 n ∑ i = k n ( 2 i − 1 1 − 2 i 1 ) = ∑ k = 1 n ( 2 k − 1 1 − 2 n 1 ) = ∑ k = 1 n 2 k − 1 1 − 2 n n
= 2 ∑ k = 1 n 2 k 1 − 2 n n = 2 ( − ( 2 1 ) n + 1 ) − 2 n n = 2 − 2 n n + 2 . So a n = 2 − 2 n n + 2 .
the limit of a n is given by:
lim n → ∞ a n = lim n → ∞ ( 2 − 2 n n + 2 ) = 2 − lim n → ∞ ( 2 n n + 2 ) = 2 − lim n → ∞ ( 2 n l n 2 1 ) = 2 . follow that lim n → ∞ a n = 2 .
lim n → ∞ ( n + 1 2 n ( 2 − a n ) ) ( n + 1 ) = lim n → ∞ ( n + 1 2 n ( 2 − ( 2 − 2 n n + 2 ) ) ) ( n + 1 ) = lim n → ∞ ( n + 1 n + 2 ) ( n + 1 ) = lim n → ∞ ( 1 + n + 1 1 ) ( n + 1 ) = e
Problem Loading...
Note Loading...
Set Loading...
a n 2 a n ( 2 a n − a n ) ⟹ a n = 2 1 1 + 2 2 2 + 2 3 3 + 2 4 4 + ⋯ + 2 n n = 1 + 2 2 + 2 2 3 + 2 3 4 + ⋯ + 2 n − 1 n = 1 + 2 1 + 2 2 1 + 2 3 1 + ⋯ + 2 n − 1 1 − 2 n n = 1 − 2 1 1 − 2 n 1 − 2 n n = 2 − 2 n − 1 1 − 2 n n
Then, we have:
n → ∞ lim ( n + 1 2 n ( 2 − a n ) ) n + 1 = n → ∞ lim ( n + 1 2 n ( 2 − 2 + 2 − n + 1 + n 2 − n ) ) n + 1 = n → ∞ lim ( n + 1 n + 2 ) n + 1 = n → ∞ lim ( 1 + n + 1 1 ) n + 1 = e
n → ∞ lim a n = n → ∞ lim ( 2 − 2 n − 1 1 − 2 n n ) = 2 − 0 − n → ∞ lim 2 n ln 2 1 = 2 − 0 A ∞ / ∞ case, L’H o ˆ pital’s rule applies. Differentiate up and down w.r.t. n .
Therefore the answer is e and 2 .