Double logarithmic differentiation

Calculus Level 4

Given that y = x ( ln x ) x y = x^{(\ln x)^x} and d y d x \dfrac{dy}{dx} can be expressed in the form y ln y f ( x ) y\ln yf(x) . Find f ( x ) f(x) .

x + ln x x+ \ln x 1 ln x \frac{1}{\ln x} None of these choices ln ln x + x + 1 x ln x \ln \ln x +\frac{x+1}{x\ln x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 27, 2017

y = x ln x x Taking natural logarithm both sides. ln y = ln x x ln x = ln x + 1 x Taking natural logarithm both sides. ln ( ln y ) = ( x + 1 ) ln ( ln x ) Differentiating both sides. 1 ln y 1 y d y d x = ln ( ln x ) + ( x + 1 ) 1 ln x 1 x d y d x = y ln y ( ln ( ln x ) + x + 1 x ln x ) \begin{aligned} y & = x^{\ln^x x} & \small \color{#3D99F6} \text{Taking natural logarithm both sides.} \\ \ln y & = \ln^x x \cdot \ln x \\ & = \ln^{x+1} x & \small \color{#3D99F6} \text{Taking natural logarithm both sides.} \\ \ln (\ln y) & = (x+1) \ln (\ln x) & \small \color{#3D99F6} \text{Differentiating both sides.} \\ \frac 1{\ln y} \cdot \frac 1y \cdot \frac {dy}{dx} & = \ln (\ln x) + (x+1)\cdot \frac 1{\ln x} \cdot \frac 1x \\ \implies \frac {dy}{dx} & = y \ln y \left(\ln (\ln x) + \frac {x+1}{x\ln x} \right) \end{aligned}

f ( x ) = ln ( ln x ) + x + 1 x ln x \implies f(x) = \boxed{\ln(\ln x) + \dfrac {x+1}{x\ln x}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...