Double Problem

Let R R be the remainder when 97 ! 97! is divided by 101.

M = 2 R + 2 R 1 + 2 R 2 + . . . . . . . . + 2 1 + 2 0 M = 2^R + 2^{R-1} + 2^{R-2} + ........ + 2^1 + 2^0

Find the last three digits of M.


The answer is 143.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From Wilson's Theorem, we get

100 ! 1 ( m o d 101 ) 100! \equiv -1 \pmod {101}

100 ! 100 ( m o d 101 ) \Rightarrow 100! \equiv 100 \pmod {101}

99 ! 1 ( m o d 101 ) \Rightarrow 99! \equiv 1 \pmod {101}

99 ! 101 × 49 + 1 ( m o d 101 ) \Rightarrow 99! \equiv 101 \times 49 + 1 \pmod {101}

98 ! 50 ( m o d 101 ) \Rightarrow 98! \equiv 50 \pmod {101}

98 ! 101 × 16 + 50 ( m o d 101 ) \Rightarrow 98! \equiv 101 \times 16 + 50 \pmod {101}

97 ! 17 ( m o d 101 ) \Rightarrow 97! \equiv 17 \pmod {101}

So, R = 17 R=17 .

We know, 2 0 + 2 1 + 2 2 + . . . . . . . . . + 2 n 1 = 2 n 1 2^0 + 2^1 + 2^2 + .........+ 2^{n-1} = 2^n -1

Hence, M = 2 0 + 2 1 + 2 2 + . . . . . . . . . + 2 17 = 2 18 1 = 262143 M = 2^0 + 2^1 + 2^2 + .........+ 2^{17} = 2^{18}-1 = 262143

So, the last three digits of M M are 143 \boxed{143} .

How do you get 98 ! =50 ( mod 101 ) from the previous step

Sriram Venkatesan - 3 years, 6 months ago
Piyushkumar Palan
Dec 29, 2013

As 101 is prime, by Wilson's theorem, 99 ! 1 ( m o d 101 ) 99! \equiv 1 \pmod{101}

97 ! 98 99 1 ( m o d 101 ) 97! \cdot 98 \cdot 99 \equiv 1 \pmod{101}

97 ! ( 3 ) ( 2 ) 1 ( m o d 101 ) 97! \cdot (-3) \cdot (-2) \equiv 1 \pmod{101}

97 ! 6 1 ( m o d 101 ) 97! \cdot 6 \equiv 1 \pmod{101}

97 ! 6 1 ( m o d 101 ) 97! \equiv 6^{-1} \pmod{101}

97 ! 17 ( m o d 101 ) 97! \equiv 17 \pmod{101} ....... because 6 17 = 102 1 ( m o d 101 ) 6 \cdot 17 = 102 \equiv 1 \pmod{101}

So R = 17 R = 17

So M = 2 17 + 2 16 + . . . + 2 1 + 2 0 = 2 18 1 = ( 2 9 ) 2 1 = 51 2 2 1 = 262143 M = 2^{17} + 2^{16} + ... +2^1 + 2^0 = 2^{18} - 1 = (2^9)^2 - 1 = 512^2 - 1 = 262143

So answer is 143 \boxed{143}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...