Double-Square Summation

Algebra Level 5

n = 1 n n 4 + 4 = ? \large\displaystyle\sum_{n=1}^{\infty}\dfrac{n}{n^4+4}=\ ?


The answer is 0.375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Note first that

n n 4 + 4 = 1 4 ( 1 n 2 2 n + 2 1 n 2 + 2 n + 2 ) = \dfrac{n}{n^{4} + 4} = \dfrac{1}{4}\left(\dfrac{1}{n^{2} - 2n + 2} - \dfrac{1}{n^{2} + 2n + 2}\right) =

1 4 ( 1 ( n 1 ) 2 + 1 1 ( n + 1 ) 2 + 1 ) . \dfrac{1}{4}\left(\dfrac{1}{(n - 1)^{2} + 1} - \dfrac{1}{(n + 1)^{2} + 1}\right).

When this is summed over the positive integers, we end up with a telescoping sum, with terms canceling pairwise and leaving us with only the first "parts" of the first two terms, i.e., we end up with

1 4 ( 1 ( 1 1 ) 2 + 1 ) + 1 4 ( 1 ( 2 1 ) 2 + 1 ) = 1 4 + 1 8 = 3 8 = 0.375 . \dfrac{1}{4}\left(\dfrac{1}{(1 - 1)^{2} + 1}\right) + \dfrac{1}{4}\left(\dfrac{1}{(2 - 1)^{2} + 1}\right) = \dfrac{1}{4} + \dfrac{1}{8} = \dfrac{3}{8} = \boxed{0.375}.

To note the first observation use the Sophie-Germain identity to factor n 4 + 4 = n 4 + 4 ( 1 4 ) n^4+4 = n^4 + 4(1^4) as ( n 2 + 2 + 2 n ) ( n 2 + 2 2 n ) (n^2+2+2n)(n^2+2-2n) to get the general term as n ( n 2 + 2 + 2 n ) ( n 2 + 2 2 n ) \frac{n} {(n^2+2+2n)(n^2+2-2n)} and then use partial fractions.

Hadi Khan - 5 years, 9 months ago

I prepared the same partial fraction...but how did the minus change to plus

Purusharth Verma - 5 years, 9 months ago

Log in to reply

The expression on the final line takes the first terms for the cases n = 1 n = 1 and n = 2 , n = 2, since these are the only terms left after the sum is telescoped. I've re-formatted this line to better reflect this observation.

Brian Charlesworth - 5 years, 9 months ago

Log in to reply

Got it....thnx.

Purusharth Verma - 5 years, 9 months ago

Exactly same way.

Kushagra Sahni - 5 years, 9 months ago

A typo first line first term. Denominator 4th power of n.

Niranjan Khanderia - 4 years, 10 months ago

Log in to reply

Fixed. Thanks. :)

Brian Charlesworth - 4 years, 10 months ago

n n 4 + 4 = 1 4 ( 1 n 2 2 n + 2 1 n 2 + 2 n + 2 ) B y p a r t i a l f r a c t i o n s . 4 n n 4 + 4 = 1 1 n 2 2 n + 2 1 1 n 2 + 2 n + 2 = 1 2 1 n 2 2 n + 2 + 3 1 n 2 2 n + 2 1 1 n 2 + 2 n + 2 = 1 + 1 2 + 1 1 n 2 + 2 n + 2 1 1 n 2 + 2 n + 2 = 3 2 . 1 n n 4 + 4 = 3 8 . \dfrac n {n^4 + 4} = \dfrac 1 4 \left ( \dfrac1 {n^2 - 2n + 2} - \dfrac 1 {n^2 + 2n + 2} \right) \ \ \ \ \ \ By\ partial\ fractions.\\ \therefore\ 4*\dfrac n {n^4 + 4} \\ =\displaystyle \sum_1^{\infty} \dfrac1 {n^{2} - 2n + 2} - \sum_1^{\infty} \dfrac1 {n^{2} + 2n + 2}\\ =\displaystyle \sum_1^2 \dfrac1 {n^{2} - 2n + 2} + \sum_3^{\infty} \dfrac1 {n^{2} - 2n + 2}- \sum_1^{\infty} \dfrac1 {n^{2} + 2n + 2} \\ =\displaystyle 1+\frac 1 2 + \sum_1^{\infty} \dfrac1 {n^{2} + 2n + 2}- \sum_1^{\infty} \dfrac1 {n^{2} + 2n + 2} \\ =\frac 3 2.\\ \therefore\ \displaystyle \sum_1^{\infty} \dfrac n {n^4 + 4}=\frac 3 8.

Amartya Anshuman
Aug 23, 2015

Upon solving the last step shows that substituting n with [n+2] we get the second term... So cancellation of terms begins every two times

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...