Double sum that turns out be harmonic

Calculus Level 5

n = 1 m = 1 1 n m 2 + n 2 m + 2 m n = a b \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \dfrac{1}{nm^2 +n^2m+2mn}=\dfrac{a}{b}

The equation above holds true for coprime integers a a and b b . Find the value of a × b a\times b .

Source: Maths Facts


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Jul 7, 2019

Here I wish to share my solution

Note that n = 3 2 ( n + 1 ) ( n + 2 ) = 2 4 = 1 2 n = 3 3 n ( n + 1 ) ( n + 2 ) = n = 1 3 n ( n + 1 ) ( n + 2 ) 3 6 3 24 = 3 2 2 ! 5 8 = 1 8 \sum_{n=3}^{\infty}\dfrac{2}{(n+1)(n+2)} =\dfrac{2}{4}=\dfrac{1}{2} \\ \sum_{n=3}^{\infty}\dfrac{3}{n(n+1)(n+2)} =\sum_{n=1}^{\infty}\dfrac{3}{n(n+1)(n+2)}\\-\dfrac{3}{6}-\dfrac{3}{24}=\dfrac{3}{2\cdot 2!} -\dfrac{5}{8}=\dfrac{1}{8}

Note that 1 n m 2 + n 2 m + 2 m n = 1 m n ( m + n + 2 ) = 1 m n 0 1 x m + n + 1 d x \dfrac{1}{nm^2+n^2m+2mn} =\dfrac{1}{mn(m+n+2)}=\dfrac{1}{mn}\int_0^1 x^{m+n+1}\,dx then we have n = 1 m = 1 1 m n 0 1 x m + n + 1 d x = 0 1 x ( n = 1 m = 1 x m x n m n ) d x = 0 1 x ln 2 ( 1 x ) d x = 0 1 ( 1 x ) ln 2 x d x \sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\dfrac{1}{mn} \int_0^1 x^{m+n+1}\,dx=\int_0^1x\left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \dfrac{x^{m}\cdot x^n}{mn}\right)\,dx \\= \int_0^1 x\ln^2(1-x)\,dx =\int_0^1 (1-x)\ln^2 x\,dx hence integrating we have the result 7 4 \dfrac{7}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...