Revival of Double Summation

Calculus Level 5

m = 1 n = 1 1 m [ m ( 4 m 2 + 4 n 2 4 m + 1 ) n ( 2 m + 2 n 1 ) ] \large\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m[m(4m^2+4n^2-4m+1)-n(2m+2n-1)]} If the summation above equals to S S , find the value of e S 2 e^{\sqrt{\frac{S}{2} }} .

This is one of my original problems .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karthik Kannan
Jun 24, 2015

Let S = m = 1 n = 1 1 m [ m ( 4 m 2 + 4 n 2 4 m + 1 ) n ( 2 m + 2 n 1 ) ] \mathcal{S}=\displaystyle\sum_{m=1}^{\infty}\displaystyle \sum_{n=1}^{\infty} \frac{1}{m[m(4m^2+4n^2-4m+1)-n(2m+2n-1)]}

Simplifying we obtan

S = m = 1 n = 1 1 ( 2 m 2 m ) ( 2 m 2 m + 2 n 2 n ) . . . . . . . . . . ( 1 ) \mathcal{S}=\displaystyle\sum_{m=1}^{\infty}\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{(2m^2-m)(2m^2-m+2n^2-n)}..........(1)

S = n = 1 m = 1 1 ( 2 n 2 n ) ( 2 m 2 m + 2 n 2 n ) \therefore \mathcal{S}=\displaystyle\sum_{n=1}^{\infty}\displaystyle \sum_{m=1}^{\infty} \dfrac{1}{(2n^2-n)(2m^2-m+2n^2-n)} (Replacing m m by n n and n n by m m )

S = m = 1 n = 1 1 ( 2 n 2 n ) ( 2 m 2 m + 2 n 2 n ) \therefore \mathcal{S}=\displaystyle\sum_{m=1}^{\infty}\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{(2n^2-n)(2m^2-m+2n^2-n)} (Exchanging the order of summation) . . . . . . . . . . ( 2 ) ..........(2)

Adding ( 1 ) (1) and ( 2 ) (2)

2 S = m = 1 n = 1 1 ( 2 m 2 m ) ( 2 n 2 n ) 2\mathcal{S}=\displaystyle\sum_{m=1}^{\infty}\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{(2m^2-m)(2n^2-n)}

S = 1 2 ( m = 1 1 2 m 2 m ) 2 \therefore \mathcal{S}=\dfrac{1}{2}\left( \displaystyle\sum_{m=1}^{\infty}\dfrac{1}{2m^2-m}\right)^{2}

S = 1 2 ( 2 ( 1 1 2 + 1 3 1 4 . . . ) ) 2 \therefore \mathcal{S}=\dfrac{1}{2}\left( 2\left( 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}...\right)\right)^{2}

S = 2 ln 2 2 \therefore \mathcal{S}=\boxed{2\ln^{2} 2}

Great! Well done.

Sanjeet Raria - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...