Double summation

Find the value of

k = 1 99 ( i = 1 k i ) \sum _{ k=1 }^{ 99 }{ (\sum _{ i=1 }^{ k }{ i } ) }


The answer is 166650.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ikkyu San
Jul 13, 2015

k = 1 99 i = 1 k i = k = 1 99 k ( k + 1 ) 2 = k = 1 99 k 2 + k 2 = 1 2 k = 1 99 ( k 2 + k ) = 1 2 ( k = 1 99 k 2 + k = 1 99 k ) = 1 2 ( ( 99 ) ( 100 ) ( 199 ) 6 + ( 99 ) ( 100 ) 2 ) = 1 2 ( 328350 + 4950 ) = 1 2 ( 333300 ) = 166650 \begin{aligned}\displaystyle\sum_{k=1}^{99}\sum_{i=1}^{k}i=&\ \displaystyle\sum_{k=1}^{99}\dfrac{k(k+1)}2\\=&\ \displaystyle\sum_{k=1}^{99}\dfrac{k^2+k}2\\=&\ \dfrac12\displaystyle\sum_{k=1}^{99}(k^2+k)\\=&\ \dfrac12\left(\displaystyle\sum_{k=1}^{99}k^2+\displaystyle\sum_{k=1}^{99}k\right)\\=&\ \dfrac12\left(\dfrac{(99)(100)(199)}6+\dfrac{(99)(100)}2\right)\\=&\ \dfrac12(328350+4950)\\=&\ \dfrac12(333300)=\boxed{166650}\end{aligned}

Summation upto n terms = n(n+1)/2. Summation of summations=(1^2+2^2+. . .+99^2+1+2+. . +99)/2. Summation of squares upto n terms=n(n+1)(2n+1)/6. Use these.

Was my solution too poor to earn an upvote??

Chandrachur Banerjee - 6 years, 9 months ago
K. J. W.
Jul 16, 2014

Apologies for the typo in the original question.

The sum is

+1

+1+2

+1+2+3

+1+2+3+4

+1+2+3+4+5

...

+1+2+...+99

=1x99+2x98+3x97+...+98x2+99x1

=2(1x99+2x98+..+49x51)+50x50

=2((50+1)(50-1)+(50+2)(50-2)+...+(50+49)(50-49))+50x50

=2(49(50^2)-(1^2+2^2+...+49^2))+50x50

=2(122500-((49)(50)(99))/6)+50x50

=2(122500-40425)+50x50

=2(82075)+50x50

=164150+2500

=166650

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...