Double summation

Find the value of - C i C j 0 i < j n \underset { 0\le i<j\le n }{ \sum { \sum { { C }_{ i }{ C }_{ j } } } }

where C k = ( n k ) = n ! ( n k ) ! k ! C_k = \dbinom n{k} = \dfrac{n!}{(n-k)! k!} .

2 2 n 1 ( 2 n ) ! 2 ( n 1 ! ) ( n 1 ! ) { 2 }^{ 2n-1 }-\frac { (2n)! }{ 2(n-1!)(n_1!) } 2 2 n 1 ( 2 n ) ! ( n ! ) ( n ! ) { 2 }^{ 2n-1 }-\frac { (2n)! }{ (n!)(n!) } 2 2 n ( 2 n ) ! ( n ! ) ( n ! ) { 2 }^{ 2n }-\frac { (2n)! }{ (n!)(n!) } 2 2 n 1 ( 2 n ) ! 2 ( n ! ) ( n ! ) { 2 }^{ 2n-1 }-\frac { (2n)! }{ 2(n!)(n!) }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prajwal Krishna
Nov 6, 2016

[ n C 0 _{ }^{ n }{ C }_{ 0 }^{ } + n C 1 _{ }^{ n }{ C }_{ 1 }^{ } + n C 2 _{ }^{ n }{ C }_{ 2 }^{ } +.......+ n C 0 n _{ }^{ n }{ C }_{ 0n}^{ } ] 2 \overset { 2 }{ } =[ C 0 2 { C }_{ 0 }^{ 2 } + C 1 2 { C }_{ 1 }^{ 2 } + C 2 2 { C }_{ 2 }^{ 2 } + ........... C n 2 { C }_{ n }^{ 2 } ] + 2[ C i C j 0 i < j n \underset { 0\le i<j\le n }{ \sum { \sum { { C }_{ i }{ C }_{ j } } } } ] \Rightarrow ( 2 n ) 2 { ({ 2 }^{ n } })^{ 2 } = 2 n C n _{ }^{ 2n }{ { C }_{ n }^{ } } + 2[ C i C j 0 i < j n \underset { 0\le i<j\le n }{ \sum { \sum { { C }_{ i }{ C }_{ j } } } } ] \Rightarrow 2[ C i C j 0 i < j n \underset { 0\le i<j\le n }{ \sum { \sum { { C }_{ i }{ C }_{ j } } } } ] = 2 2 n { 2 }^{ 2n } - ( 2 n ) ! ( n ! ) ( n ! ) \frac { (2n)! }{ (n!)(n!) } \Rightarrow [ C i C j 0 i < j n \underset { 0\le i<j\le n }{ \sum { \sum { { C }_{ i }{ C }_{ j } } } } ] = 2 2 n 1 { 2 }^{ 2n-1 } - ( 2 n ) ! 2 ( n ! ) ( n ! ) \frac { (2n)! }{ 2(n!)(n!) }

great solution though

space sizzlers - 4 years, 4 months ago

can you visualise this summation in terms of standard combinatorics ?

Ujjwal Mani Tripathi - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...