Find the value of
Note : do NOT use wolfram alpha
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have:
I = m = 1 ∑ ∞ n = 1 ∑ ∞ 2 n ( n 2 m + m 2 n ) m n 2
= m = 1 ∑ ∞ n = 1 ∑ ∞ 4 n 2 m ( 2 n n + 2 m m ) m n 2 (Divide by 2 m 2 n ).
Now:
2 I = m = 1 ∑ ∞ n = 1 ∑ ∞ 4 n 2 m ( 2 n n + 2 m m ) m n 2 + m = 1 ∑ ∞ n = 1 ∑ ∞ 4 m 2 n ( 2 m m + 2 n n ) n m 2
= m = 1 ∑ ∞ n = 1 ∑ ∞ 4 n 2 m ( 2 n n + 2 m m ) m n 2 + 4 m 2 n ( 2 m m + 2 n n ) n m 2
= m = 1 ∑ ∞ n = 1 ∑ ∞ 2 m m + 2 n n 2 m 2 n m n ( 2 n n + 2 m m )
= m = 1 ∑ ∞ n = 1 ∑ ∞ 2 m 2 n m n
= ( m = 1 ∑ ∞ 2 m m ) 2
The last series can be derived from the geometric series :
k = 1 ∑ ∞ x k = 1 − x x where x ∈ ] − 1 , 1 [
Differentiate both sides:
k = 1 ∑ ∞ k x k − 1 = ( 1 − x ) 2 1
Multiply by x :
k = 1 ∑ ∞ k x k = ( 1 − x ) 2 x
Therefore:
2 I = ( m = 1 ∑ ∞ m ( 2 1 ) m ) 2 = ( ( 1 − 2 1 ) 2 2 1 ) 2 = 4
Hence, I = 2 .