Double Trouble

Calculus Level 5

S n = ( 1 tan 4 π 2 3 ) ( 1 tan 4 π 2 4 ) ( 1 tan 4 π 2 5 ) ( 1 tan 4 π 2 n ) S_n = \left(1-\tan^4\frac{\pi}{2^3}\right) \left(1-\tan^4\frac{\pi}{2^4}\right) \left(1-\tan^4\frac{\pi}{2^5}\right) \ldots \left(1-\tan^4\frac{\pi}{2^n}\right)

For S n S_n as defined above, evaluate 30.28 lim n π 3 S n \displaystyle30.28 \lim_{n\to\infty}\frac{\pi^3}{S_n} to the nearest Integer .


The answer is 969.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alakh Aggarwal
May 13, 2014

taking one term out of bracket.... S(n) = (1-tan^4 pi/2^3)(1-tan^4 pi/2^4)..............(1-tan^4 pi/2)n) series has n-2 terms......... analysing (k-2)th term.......... 1- tan^4 pi/2^k = (1 - tan^2 pi/2^k)(1 + tan^2 pi/2^k) = {(cos^2 pi/2^k - sin^2 pi/2^k)/cos^2 pi/2^k)}(sec^2 pi/2^k) = cos(pi / 2^(k-1) )/cos^4 pi/2^k therefore, series --> S(n) = cos (pi/4) cos(pi/8)........cos(pi/2^(n-1) / { cos(pi/8)cos(pi/16).....cos(pi/2^n) }^4 = sin(2^(n-2)pi/2^(n-1)) / 2^(n-2)sin(pi/2^(n-1)) * {2^(n-2)sin(pi/2^(n))/sin(2^(n-2)pi/2^(n))}^4 [using cos x . cos 2x . cos 4x. ................ cos 2^n x = sin(2^n x)/2^n sinx ].............. now putting lim n--> infinity and using lim x--> 0 sinx / x=1 S(n) = 2 pi^3 / 64 = pi^3 / 32 therefore, 30.28 lim(n--> infinity) pi^3 / S(n) = 30.28 * 32 = 968.96

I also did the same , but why I am getting the answer different?

S n = ( cos 4 π 2 3 sin 4 π 2 3 cos 4 π 2 3 ) ( cos 4 π 2 4 sin 4 π 2 4 cos 4 π 2 4 ) ( cos 4 π 2 n sin 4 π 2 n sin 4 π 2 n ) \displaystyle S_n = \left(\dfrac{\cos^4\frac{\pi}{2^3}-\sin^4\frac{\pi}{2^3}}{\cos^4\frac{\pi}{2^3}}\right)\left(\dfrac{\cos^4\frac{\pi}{2^4} -\sin^4\frac{\pi}{2^4}}{\cos^4\frac{\pi}{2^4}}\right)\ldots\left(\dfrac{\cos^4\frac{\pi}{2^n}-\sin^4\frac{\pi}{2^n}}{\sin^4\frac{\pi}{2^n}}\right)

S n = ( cos 2 π 2 3 sin 2 π 2 3 cos 4 π 2 3 ) ( cos 2 π 2 4 sin 2 π 2 4 cos 4 π 2 4 ) ( cos 2 π 2 n sin 2 π 2 n sin 4 π 2 n ) \displaystyle S_n = \left(\dfrac{\cos^2\frac{\pi}{2^3}-\sin^2\frac{\pi}{2^3}}{\cos^4\frac{\pi}{2^3}}\right)\left(\dfrac{\cos^2\frac{\pi}{2^4} -\sin^2\frac{\pi}{2^4}}{\cos^4\frac{\pi}{2^4}}\right)\ldots\left(\dfrac{\cos^2\frac{\pi}{2^n}-\sin^2\frac{\pi}{2^n}}{\sin^4\frac{\pi}{2^n}}\right)

S n = cos π 2 2 × cos π 2 3 × cos π 2 n 1 ( cos π 2 3 × π 2 4 cos π 2 n ) \displaystyle S_{n} = \dfrac{ \cos \dfrac{\pi}{2^2} \times \cos \dfrac{\pi}{2^3} \cdots \times \cos \dfrac{\pi}{2^{n-1}}}{\left(\cos \dfrac{\pi}{2^3} \times \dfrac{\pi}{2^4} \cdots \cos \dfrac{\pi}{2^n}\right)}

S n = sin π 2 2 n 1 sin π 2 n 1 ( sin π 4 2 n sin π 2 n ) 4 \displaystyle S_{n} = \dfrac{ \dfrac{\sin \dfrac{\pi}{2}}{2^{n-1} \sin \dfrac{\pi}{2^{n-1}}}}{\left( \dfrac{ \sin \dfrac{\pi}{4}}{2^n \sin \dfrac{\pi}{2^n}}\right)^4}

lim S n = 1 π 1 ( 2 π ) 4 \displaystyle \lim_{\to \infty } S_{n} = \dfrac{ \dfrac{1}{\pi}}{\dfrac{1}{(\sqrt{2} \pi)^4}}

S n = 4 ( π ) 3 S_{n} = 4 (\pi)^3

30.28 π 3 4 π 3 = 30.28 × 4 = 121.12 w h i c h i s n e a r l y e q u a l t o 121 30.28 \dfrac{\pi^3}{4 \pi^3} = 30.28 \times 4 = 121.12 ~which~is~nearly~equal~to~ 121

Calvin Lin Anish Puthuraya

U Z - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...