S n = ( 1 − tan 4 2 3 π ) ( 1 − tan 4 2 4 π ) ( 1 − tan 4 2 5 π ) … ( 1 − tan 4 2 n π )
For S n as defined above, evaluate 3 0 . 2 8 n → ∞ lim S n π 3 to the nearest Integer .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I also did the same , but why I am getting the answer different?
S n = ( cos 4 2 3 π cos 4 2 3 π − sin 4 2 3 π ) ( cos 4 2 4 π cos 4 2 4 π − sin 4 2 4 π ) … ( sin 4 2 n π cos 4 2 n π − sin 4 2 n π )
S n = ( cos 4 2 3 π cos 2 2 3 π − sin 2 2 3 π ) ( cos 4 2 4 π cos 2 2 4 π − sin 2 2 4 π ) … ( sin 4 2 n π cos 2 2 n π − sin 2 2 n π )
S n = ( cos 2 3 π × 2 4 π ⋯ cos 2 n π ) cos 2 2 π × cos 2 3 π ⋯ × cos 2 n − 1 π
S n = ⎝ ⎛ 2 n sin 2 n π sin 4 π ⎠ ⎞ 4 2 n − 1 sin 2 n − 1 π sin 2 π
→ ∞ lim S n = ( 2 π ) 4 1 π 1
S n = 4 ( π ) 3
3 0 . 2 8 4 π 3 π 3 = 3 0 . 2 8 × 4 = 1 2 1 . 1 2 w h i c h i s n e a r l y e q u a l t o 1 2 1
Calvin Lin Anish Puthuraya
Problem Loading...
Note Loading...
Set Loading...
taking one term out of bracket.... S(n) = (1-tan^4 pi/2^3)(1-tan^4 pi/2^4)..............(1-tan^4 pi/2)n) series has n-2 terms......... analysing (k-2)th term.......... 1- tan^4 pi/2^k = (1 - tan^2 pi/2^k)(1 + tan^2 pi/2^k) = {(cos^2 pi/2^k - sin^2 pi/2^k)/cos^2 pi/2^k)}(sec^2 pi/2^k) = cos(pi / 2^(k-1) )/cos^4 pi/2^k therefore, series --> S(n) = cos (pi/4) cos(pi/8)........cos(pi/2^(n-1) / { cos(pi/8)cos(pi/16).....cos(pi/2^n) }^4 = sin(2^(n-2)pi/2^(n-1)) / 2^(n-2)sin(pi/2^(n-1)) * {2^(n-2)sin(pi/2^(n))/sin(2^(n-2)pi/2^(n))}^4 [using cos x . cos 2x . cos 4x. ................ cos 2^n x = sin(2^n x)/2^n sinx ].............. now putting lim n--> infinity and using lim x--> 0 sinx / x=1 S(n) = 2 pi^3 / 64 = pi^3 / 32 therefore, 30.28 lim(n--> infinity) pi^3 / S(n) = 30.28 * 32 = 968.96