This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This integral fails to converge. If we attempt to evaluate the infinite integral using polar coordinates, we obtain ∫ ∫ x 2 + y 2 ≤ R 2 x , y ≥ 0 sin ( x 2 + y 2 ) d x d y = = = = ∫ 0 2 1 π ∫ 0 R sin r 2 r d r d θ 2 1 π ∫ 0 R r sin r 2 d r 2 1 π [ − 2 1 cos r 2 ] 0 R 4 1 π ( 1 − cos R 2 ) which has no limit as R → ∞ .
That we can calculate the infinite integral ∫ 0 ∞ sin ( x 2 + y 2 ) d x = ∫ 0 ∞ ( sin x 2 cos y 2 + cos x 2 sin y 2 ) d x = 8 π ( sin y 2 + cos y 2 ) so that the iterated integral ∫ 0 ∞ ( ∫ 0 ∞ sin ( x 2 + y 2 ) d x ) d y = 4 1 π exists is not relevant.