Double

Calculus Level 5

0 0 sin ( x 2 + y 2 ) d x d y \large \int_0^\infty \int_0^\infty \sin(x^2+y^2) \, dx \; dy

Compute the integral above.

π 3 \frac{\pi}{3} The integral does not exist π 4 \frac{\pi}{4} π 2 \frac{\pi}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 5, 2016

This integral fails to converge. If we attempt to evaluate the infinite integral using polar coordinates, we obtain x , y 0 x 2 + y 2 R 2 sin ( x 2 + y 2 ) d x d y = 0 1 2 π 0 R sin r 2 r d r d θ = 1 2 π 0 R r sin r 2 d r = 1 2 π [ 1 2 cos r 2 ] 0 R = 1 4 π ( 1 cos R 2 ) \begin{array}{rcl} \displaystyle \int\int_{{x,y \ge0 \atop x^2 + y^2 \le R^2}} \sin(x^2+y^2)\,dx\,dy & = & \displaystyle \int_0^{\frac12\pi} \int_0^R \sin r^2\, r\,dr\,d\theta \\ & = & \displaystyle \tfrac12\pi\int_0^R r \sin r^2\,dr \\ & = & \displaystyle \tfrac12\pi \Big[-\tfrac12 \cos r^2 \Big]_0^R \\ & = & \displaystyle \tfrac14\pi\big(1 - \cos R^2\big) \end{array} which has no limit as R R \to \infty .

That we can calculate the infinite integral 0 sin ( x 2 + y 2 ) d x = 0 ( sin x 2 cos y 2 + cos x 2 sin y 2 ) d x = π 8 ( sin y 2 + cos y 2 ) \int_0^\infty \sin(x^2+y^2)\,dx \; = \; \int_0^\infty \big(\sin x^2 \cos y^2 + \cos x^2 \sin y^2\big)\,dx \; = \; \sqrt{\frac{\pi}{8}}\big(\sin y^2 + \cos y^2\big) so that the iterated integral 0 ( 0 sin ( x 2 + y 2 ) d x ) d y = 1 4 π \int_0^\infty \left( \int_0^\infty \sin(x^2 + y^2)\,dx\right)\,dy \; = \; \tfrac14\pi exists is not relevant.

@Mark Hennings , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...