Doubling the cube

Geometry Level 3

A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P P is on the top edge and the crease mark on the edge meets the other crease mark Q Q .

What is P B P A \dfrac{PB}{PA} ?


The answer is 1.2599210498948731647672106072782.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Apr 17, 2019

As shown by the above figure let the paper be of side length a Let P A = x A C = y P B = a x C P = a y In Δ A C P we have, x 2 + y 2 = ( a y ) 2 P A C = 90 x 2 = a 2 2 a y y = a 2 x 2 2 a a y = a 2 + x 2 2 a sin θ = y a y = a 2 x 2 a 2 + x 2 ( 1 ) In Δ P D E we have, P D = 2 3 a x P E = a 3 cos ( 90 θ ) = P D P E sin θ = 2 3 a x a 3 ( 2 ) From ( 1 ) and ( 2 ) a 2 x 2 a 2 + x 2 = 2 3 a x a 3 a 2 x 2 a 2 + x 2 = 2 a 3 x a a ( a 2 x 2 ) = ( a 2 + x 2 ) ( 2 a 3 x ) a 3 a x 2 = 2 a 3 3 a 2 x + 2 a x 2 3 x 3 2 x 3 = ( a 3 3 a 2 x + 3 a x 2 x 3 ) 2 x 3 = ( a x ) 3 ( a x ) 3 x 3 = 2 P B P A = ( a x ) x = 2 3 1.2599 \begin{aligned} \text{As shown}&\text{ by the above figure let the paper be of side length } a\\ \text{Let } PA&= x\\ AC&=y\\\\ \implies PB&=a-x\\ CP&=a-y\\\\ \text{In } &\Delta ACP \text{ we have,}\\\\ x^2+y^2&=(a-y)^2\hspace{5mm}\color{#3D99F6}\small\angle PAC={90}^{\circ}\\ x^2&=a^2-2ay\\ y&=\dfrac{a^2-x^2}{2a}\\ a-y&=\dfrac{a^2+x^2}{2a}\\ \sin{\theta}&=\dfrac{y}{a-y}\\ &=\dfrac{a^2-x^2}{a^2+x^2}\hspace{5mm}\color{#3D99F6}\small(1)\\\\ \text{In } &\Delta PDE \text{ we have,}\\\\ PD&=\dfrac{2}{3}a-x\\ PE&=\dfrac{a}{3}\\\\ \cos({90-\theta})&=\frac{PD}{PE}\\\\ \sin\theta&=\dfrac{\dfrac{2}{3}a-x}{\dfrac{a}{3}}\hspace{5mm}\color{#3D99F6}\small(2)\\\\ \text{From }&\color{#3D99F6}\small(1) \color{#333333}\normalsize\text{ and } \color{#3D99F6}\small(2)\\ \dfrac{a^2-x^2}{a^2+x^2}&=\dfrac{\dfrac{2}{3}a-x}{\dfrac{a}{3}}\\ \dfrac{a^2-x^2}{a^2+x^2}&=\dfrac{2a-3x}{a}\\ a(a^2-x^2)&=(a^2+x^2)(2a-3x)\\ a^3-ax^2&=2a^3-3a^2x+2ax^2-3x^3\\ \implies 2x^3&=(a^3-3a^2x+3ax^2-x^3)\\ \implies 2x^3&=(a-x)^3\\ \implies \dfrac{(a-x)^3}{x^3}&=2\\ \implies \dfrac{PB}{PA}&=\dfrac{(a-x)}{x}=\sqrt[3]2\approx\color{#EC7300}\boxed{\color{#333333}1.2599}\end{aligned}

Gabriel Chacón
Apr 17, 2019

A P 2 = ( l x ) 2 x 2 = ( l x + x ) ( l x x ) = l ( l 2 x ) A P = l ( l 2 x ) \overline{AP}^2=(l-x)^2-x^2=(l-x+x)(l-x-x)=l(l-2x) \implies \overline{AP}=\sqrt{l(l-2x)}

B P = l A P = l l ( l 2 x ) \overline{BP}=l-\overline{AP}=l-\sqrt{l(l-2x)}

Let l = 1 l=1 from now on to simplify the expressions. So far we have:

A P = 1 2 x ; B P = l A P = 1 1 2 x ; B P A P = 1 1 2 x 1 \overline{AP}=\sqrt{1-2x}; \qquad \overline{BP}=l-\overline{AP}=1-\sqrt{1-2x}; \qquad \dfrac{\overline{BP}}{\overline{AP}}=\dfrac{1}{\sqrt{1-2x}}-1

We now find x x noting that triangles A C P \triangle{ACP} and P R Q \triangle PRQ are similar:

x l x = B P l / 3 l / 3 \dfrac{x}{l-x}=\dfrac{\overline{BP}-l/3}{l/3}

Being l = 1 l=1 and B P = 1 1 2 x \overline{BP}=1-\sqrt{1-2x} we obtain x 1 x = 3 ( 1 1 2 x ) 1 \dfrac{x}{1-x}=3(1-\sqrt{1-2x})-1

After some algebraic manipulation, we get the following 3rd-degree polynomial on x x and calculate its unique real root*:

18 x 3 36 x 2 + 24 x 5 = 0 x = 4 4 3 6 0.4021 18x^3-36x^2+24x-5=0 \implies x=\dfrac{4-\sqrt[3]{4}}{6}\approx 0.4021

The desired value is B P A P = 1 1 4 4 3 3 1 1 , 2599 \dfrac{\overline{BP}}{\overline{AP}}=\dfrac{1}{\sqrt{1-\frac{4-\sqrt[3]{4}}{3}}}-1\approx \boxed{1,2599}


*It is a laborious task to calculate the root's exact value . I lazily obtained it using Geogebra CAS.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...