Doubly Infinite Integral

Calculus Level 3

Evaluate:

lim n e [ x sinh 2 n x ] d x \lim_{n\to\infty} \int_{-\infty}^{\infty} e^{[x-\sinh^{2n}x]} dx

e 1 e e^{\frac{1}{e}} 2 l n ( 1 + 2 ) ln(1+\sqrt{2}) a r s i n h ( e ) arsinh(e) s i n h ( 1 e ) sinh(\frac{1}{e})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Sapiano
Nov 28, 2019

sinh 2 n x 0 \sinh^{2n}x \geq 0

Notice that when sinh x > 1 , lim n sinh 2 n x = |\sinh x| >1, \lim_{n\to\infty} \sinh^{2n}x = \infty

Therefore lim n e x sinh 2 n x \lim_{n\to\infty} e^{x-\sinh^{2n}x} tends to e = 0 e^{-\infty} = 0 in the range sinh x > 1 |\sinh x| >1 so we need not integrate in this region.

Also notice that when 1 < sinh x < 1 , lim n sinh 2 n x = 0 -1 < \sinh x <1, \lim_{n\to\infty} \sinh^{2n}x = 0

Therefore lim n e x sinh 2 n x \lim_{n\to\infty} e^{x-\sinh^{2n}x} tends to e x e^{x} in the range 1 < sinh x < 1 -1 < \sinh x <1

Note a r s i n h x arsinh x is defined as ln ( x + 1 + x 2 ) \ln(x + \sqrt{1+x^2})

Therefore the range of values that we must integrate e x e^x is a r s i n h ( 1 ) arsinh (-1) to a r s i n h ( 1 ) arsinh (1)

lim n e [ x sinh 2 n x ] d x = ln ( 1 + 2 ) ln ( 1 + 2 ) e x d x = 2 \lim_{n\to\infty} \int_{-\infty}^{\infty} e^{[x-\sinh^{2n}x]} dx = \int_{\ln(-1 + \sqrt{2})}^{\ln(1 + \sqrt{2})} e^x dx= \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...