Dr. Fiendish 4

Algebra Level 3

Dr. Fiendish loves chocolate. His favourite, the Wonka chocolate, has sizes of a × b a\times b , b × c b\times c & c × d c\times d . Given the equations below, find the size of the smallest type of chocolate, i.e. the smallest among a × b a\times b , b × c b\times c & c × d c\times d . { a b c + 2 a b + 3 a c + b c + 6 a + 2 b + 3 c = 534 a b + 3 a + b + 12 = 63 b c + 2 b + 3 c 4 = 80 2 c d + 8 c + 4 d = 264 \begin{cases} abc+2ab+3ac+bc+6a+2b+3c=534\\ ab+3a+b+12=63\\ bc+2b+3c-4=80\\ 2cd+8c+4d=264 \end{cases} If you think this question is unsolvable or flawed, type 0. Need a warm-up?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The basic question is, how to factorize?

Here is the method :

Let a b c + 2 a b + 3 a c + b c + 6 a + 2 b + 3 c + p q r ( a + p ) ( b + q ) ( c + r ) abc+2ab+3ac+bc+6a+2b+3c+pqr\equiv (a+p)(b+q)(c+r)

Then, expanding the R. H. S. of the equivalence and comparing coefficients of like terms, we get

p = 1 , q = 3 , r = 2 p q r = 6 p=1,q=3,r=2\implies pqr=6 . So, we can write the first equation as

( a + 1 ) ( b + 3 ) ( c + 2 ) = 534 + 6 = 540 (a+1)(b+3)(c+2)=534+6=540 .

Applying the same method, we can write the other equations as

( a + 1 ) ( b + 3 ) = 54 (a+1)(b+3)=54

( b + 3 ) ( c + 2 ) = 90 (b+3)(c+2)=90

( c + 2 ) ( d + 4 ) = 140 (c+2)(d+4)=140 .

Solving we get a = 5 , b = 6 , c = 8 , d = 10 a=5,b=6,c=8,d=10 .

Hence, the 5 × 6 5\times 6 is the smallest size of a chocolate. Since a single number can be put in the answer box, we put the area of such a chocolate : 30 \boxed {30} square units.

Mahdi Raza
Jun 14, 2020

\[\begin{cases} abc + 2ab + 3ac + bc + 6a + 2b + 3c {\color{red}{ +6}} &= 534 {\color{red}{ +6}} \\ ab + 3a + b + 12 {\color{green}{ -9}} &= 63 {\color{green}{ -9}} \\ bc + 2b + 3c - 4 {\color{blue}{ +10}} &= 80 {\color{blue}{ +10}} \\ cd + 4c + 2d {\color{pink}{ +8}} &= 132 {\color{pink}{ +8}} \end{cases}

\implies

\begin{cases} (a+1)(b+3)(c+2) &= 540 &\ldots {\color{red}{(1)}} \\ (a+1)(b+3) &= 54 &\ldots {\color{green}{(2)}} \\ (b+3)(c+2) &= 90 &\ldots {\color{blue}{(3)}} \\ (c+2)(d+4) &= 140 &\ldots {\color{pink}{(4)}} \end{cases} \]


Finding c c

( 1 ) ( 2 ) ( c + 2 ) = 10 c = 8 \dfrac{{\color{#D61F06}{(1)}}}{{\color{#20A900}{(2)}}} \implies (c+2) = 10 \implies \boxed{c = 8}

Finding a a

( 1 ) ( 3 ) ( a + 1 ) = 6 a = 5 \dfrac{{\color{#D61F06}{(1)}}}{{\color{#3D99F6}{(3)}}} \implies (a+1) = 6 \implies \boxed{a=5}

Substitute in ( 1 ) {\color{#D61F06}{(1)}} to find b b

( a + 1 ) ( b + 3 ) ( c + 2 ) = 540 ( ( 5 ) + 1 ) ( b + 3 ) ( ( 8 ) + 2 ) = 540 b + 3 = 9 b = 6 \begin{aligned} (a+1)(b+3)(c+2) &= 540 \\ ((5)+1)(b+3)((8)+2) &= 540 \\ b+3 &= 9 \implies \boxed{b = 6} \end{aligned}

Substitute in c c in ( 4 ) {\color{#E81990}{(4)}} to find d d

( c + 2 ) ( d + 4 ) = 140 ( ( 8 ) + 2 ) ( d + 4 ) = 140 d + 4 = 14 d = 10 \begin{aligned} (c+2)(d+4) &= 140 \\ ((8)+2)(d+4) &= 140 \\ d+4 &= 14 \implies \boxed{d = 10} \end{aligned}


The least among the three sizes is a b = 30 b c = 48 c d = 80 \boxed{ab = 30} \quad bc = 48 \quad cd = 80

Great organised solution! BTW, there’s a minor typo on the fourth line. The coefficients of c c & d d are 4 4 & 2 2 . :)

Jeff Giff - 12 months ago

Log in to reply

Thank you. Fixed the typo

Mahdi Raza - 12 months ago

Log in to reply

Nice :) You’re welcome

Jeff Giff - 12 months ago
Jeff Giff
Jun 14, 2020

Organise. { a b c + 2 a b + 3 a c + b c + 6 a + 2 b + 3 c = 534 a b + 3 a + b + 12 12 = 63 12 = 51 b c + 2 b + 3 c 4 + 4 = 80 + 4 = 84 2 c d + 8 c + 4 d 2 = 264 2 = 132 \begin{cases} abc+2ab+3ac+bc+6a+2b+3c=534\\ ab+3a+b+12-12=63-12=51\\ bc+2b+3c-4+4=80+4=84\\ \frac{2cd+8c+4d}{2}=\frac{264}{2}=132 \end{cases} Factorise. { a b c + 2 a b + 3 a c + b c + 6 a + 2 b + 3 c + 6 = ( a + 1 ) ( b + 3 ) ( c + 2 ) = 540 a b + 3 a + b + 3 = ( a + 1 ) ( b + 3 ) = 54 b c + 2 b + 3 c + 6 = ( b + 3 ) ( c + 2 ) = 90 c d + 4 c + 2 d + 8 = ( c + 2 ) ( d + 4 ) = 140 \begin{cases} abc+2ab+3ac+bc+6a+2b+3c+6=(a+1)(b+3)(c+2)=540\\ ab+3a+b+3=(a+1)(b+3)=54\\ bc+2b+3c+6=(b+3)(c+2)=90\\ cd+4c+2d+8=(c+2)(d+4)=140 \end{cases} Now substitute w , x , y , z w,x,y,z into a + 1 , b + 3 , c + 2 , d + 4. a+1,b+3,c+2,d+4. Since w x y = 540 , w x = 54 , y = 540 54 = 10 , e t c . wxy=540,wx=54,y=\frac{540}{54}=10,etc.
Similarly, we get x = 9 , y = 10 , z = 14. x=9, y=10, z=14.
Substituting back, we have a = 5 , b = 6 , c = 8 , d = 10 , a=5,b=6,c=8,d=10, so the required answer is the smallest among a b , b c , c d , ab,bc,cd, which is a b = 30. ab=30.

This was a long problem, though basic. Nice!

Mahdi Raza - 12 months ago

Log in to reply

Thanks for your appreciation :)

Jeff Giff - 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...