Drawing and Measuring is Prohibited

Geometry Level 4

A B C \triangle ABC is an isosceles triangle with m B A C = 10 0 m\angle BAC=100^\circ and A B = A C AB=AC . B P BP and C P CP intersects at P P , with C B P = 1 0 \angle CBP=10^\circ and B C P = 2 0 \angle BCP=20^\circ . Find C A P \angle CAP , in degrees.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Lemuel Liverosk
May 9, 2016

Extend C P \overline{CP} and intersects A B \overline{AB} at E E . Construct E F B P \overline{EF}\perp \overline{BP} intersecting B C \overline{BC} at F F .

C E \overline{CE} bisects A C B \angle ACB as m B C P = 1 2 m B C A m\angle BCP=\frac{1}{2}m\angle BCA . A C E F C E \triangle ACE\cong \triangle FCE ( A . S . A . A.S.A. ), then A C F C \overline{AC}\cong \overline{FC} .

Notice m A E C = 60 ° m\angle AEC=60° , thus m F E C = 60 ° m\angle FEC=60° , then m B E F = 60 ° = m P E F m\angle BEF=60°=m\angle PEF . E F \overline{EF} is both the angle bisector and the height of B E P \triangle BEP , indicating that B E P \triangle BEP is isosceles. Therefore, B F P \triangle BFP is also isosceles. m P F C = 2 m P B F = 20 ° m\angle PFC=2m\angle PBF=20° .

A C P F C P \triangle ACP\cong \triangle FCP ( S . A . S . S.A.S. ), then m C A P = 20 ° m\angle CAP=20° .

Since angle ABC= angle ACB, both must be=(180 - 100)/2=40. so angle ABP=30, and angle ACP=20. L e t A B = A C = x , A P = y , A P B = M , A P C = N . M + N = 180 10 20 = 150. M = 150 N . Applying Sin Law in the form S i n P S i n Q = p q , t o Δ s A B P a n d A C P . S i n 30 S i n M = y x = S i n 20 S i n N , S i n 30 S i n M = S i n 20 S i n N , S i n ( 150 N ) S i n N = S i n 30 s i n 20 . E x p a n d i n g S i n ( 150 N ) a n d s i m p l i f y i n g , w e g e t C o t N + C o t 30 = 1 S i n 20 . Inserting values we finally get N=140. P A C = 180 20 140 = 2 0 o . \text{Since angle ABC= angle ACB, both must be=(180 - 100)/2=40. so angle ABP=30, and angle ACP=20.}\\ Let \ AB=AC=x, \ AP=y,\ \ \ \angle\ APB=M,\ \ \angle\ APC=N. \ \ \therefore \ M+N=180-10 - 20=150.\ \ \implies\ M=150 - N.\\ \text{Applying Sin Law in the form } \dfrac{SinP}{SinQ}= \dfrac p q, \ to\ \Delta s\ ABP\ and\ ACP.\\ \dfrac{Sin30}{SinM}= \dfrac y x= \dfrac{Sin20}{SinN},\ \ \\ \dfrac{Sin30}{SinM}= \dfrac{Sin20}{SinN}, \implies\ \dfrac{Sin(150- N)}{SinN}=\dfrac{Sin30}{sin20}.\\ Expanding \ Sin(150 - N)\ and\ \ simplifying, \ we\ get - CotN + Cot30=\dfrac 1 {Sin20}.\\ \text{Inserting values we finally get N=140.}\ \ \therefore\ \angle\ PAC=180 - 20 - 140=20^o.

Gaurav Chahar
May 9, 2016

Triangle CAP is isosceles so angle CAP=20 degrees

Why it is isosceles?

Mateo Matijasevick - 5 years, 1 month ago

What a great solution

Valentin Duringer - 1 year ago
Zizhou Jin
Feb 9, 2021

By the way, I am Chinese.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...