Drops of Jupiter

This is a continuation of my previous question " Falling Toward a Gas Giant. " This time instead of speed you are looking for a time. You can see the solutions to that question for help with this one since the first part of the solutions are identical.

An object is suspended, at rest, ten billion meters ( 1 0 10 m 10^{10}\text{ m} ) from the center of a planet. The planet has a mass of 1.9 1 0 27 kg 1.9 \cdot 10^{27}\text{ kg} . At time t = 0 t=0 the object is released and begins falling in a straight line toward the planet. The planet's gravity is the only force acting on the object. The planet's radius is less than one hundred million meters ( 1 0 8 m 10^{8}\text{ m} ).

When will the object be one hundred million meters ( 1 0 8 m 10^{8}\text{ m} ) from the center of the planet?

Give answer in days (24 hour Earth days) and rounded to one decimal place.

For the Gravitational Constant use G = 6.674 1 0 11 m 3 kg 1 s 2 G = 6.674 \cdot 10^{-11} \text{ m}^{3} \text{ kg}^{-1} \text{ s}^{-2} .


The answer is 36.1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 26, 2016

From the previous problem, we recall that d r d t = 2 G M ( R r ) R r \frac{dr}{dt} \; = \; -\sqrt{\frac{2GM (R - r)}{Rr}} is the upwards velocity of a particle at height r r above the centre of a planet of mass M M , which starts from rest at height R R . Separating variables and solving this differential equation tells us that t = r R R r 2 G M ( R r ) d r t \; = \; \int_r^R \sqrt{\frac{Rr}{2GM(R-r)}}\,dr is the time it takes this particle to reach the height r r above the centre of the planet. Making the single substitution r = R sin 2 θ r = R\sin^2\theta yields t = sin 1 r R 1 2 π R 2 sin 2 θ 2 G M R cos 2 θ 2 R sin θ cos θ d θ = 2 R 3 G M sin 1 r R 1 2 π sin 2 θ d θ = R 3 2 G M sin 1 r R 1 2 π ( 1 cos 2 θ ) d θ = R 3 2 G M [ θ sin θ cos θ ] sin 1 r R 1 2 π = R 3 2 G M [ 1 2 π sin 1 r R + 1 R r ( R r ) ] = R 3 2 G M [ cos 1 r R + 1 R r ( R r ) ] \begin{array}{rcl} t &= & \displaystyle \int_{\sin^{-1}\sqrt{\frac{r}{R}}}^{\frac12\pi} \sqrt{\frac{R^2\sin^2\theta}{2GM R\cos^2\theta}}\,2R\sin\theta \cos\theta\,d\theta \\ & = & \displaystyle \sqrt{\frac{2R^3}{GM}}\int_{\sin^{-1}\sqrt{\frac{r}{R}}}^{\frac12\pi} \sin ^2\theta\,d\theta \; =\; \sqrt{\frac{R^3}{2GM}}\int_{\sin^{-1}\sqrt{\frac{r}{R}}}^{\frac12\pi} (1 - \cos2\theta)\,d\theta \\ & = & \displaystyle \sqrt{\frac{R^3}{2GM}}\Big[\theta - \sin\theta\cos\theta\Big]_{\sin^{-1}\sqrt{\frac{r}{R}}}^{\frac12\pi} \; = \; \sqrt{\frac{R^3}{2GM}}\Big[\tfrac12\pi - \sin^{-1}\sqrt{\tfrac{r}{R}} + \tfrac{1}{R}\sqrt{r(R-r)}\Big] \\ & = & \displaystyle \sqrt{\frac{R^3}{2GM}}\Big[\cos^{-1}\sqrt{\tfrac{r}{R}} + \tfrac{1}{R}\sqrt{r(R-r)}\Big] \end{array} Substituting the given values for the various parameters gives a time of 36.1 \boxed{36.1} days.

Brandon Stocks
Jun 25, 2016

G G is the gravitational constant 6.674 1 0 11 m 3 k g 1 s 2 6.674 \cdot 10^{-11} \, m^{3} kg^{-1} s^{-2}

M M is the mass of the planet 1.9 1 0 27 k g 1.9 \cdot 10^{27}kg

g g is acceleration due to gravity, the gravitational field

L L is the initial distance of the object from the center of the planet 1 0 10 m 10^{10}m

r r is the distance of the object from the center of the planet at any given time

v v is the speed of the object

.

Acceleration g is the time-derivative of velocity v . This acceleration is represented with negative numbers because its vector points in the direction opposite that of the position vector r .

d v d t = g = G M r 2 \frac{dv}{dt} = g = - \frac{GM}{r^{2}}

d v d t = d v d r d r d t = d v d r v = G M r 2 \frac{dv}{dt} = \frac{dv}{dr} \cdot \frac{dr}{dt} = \frac{dv}{dr} \cdot v = -GMr^{-2}

v d v = G M r 2 d r v \: dv = -GMr^{-2} \, dr , v ( a ) v ( b ) v d v = G M a b r 2 d r \; \; \int_{v(a)}^{v(b)} v \: dv = -GM \int_a^b r^{-2} \, dr

The initial position is a = L a = L , and the initial velocity is v ( a ) = 0 v(a) = 0 . Instead of using dummy variables I'm going to re-use v v for v ( b ) v(b) and re-use r r for b b .

0 v v d v = 1 2 v 2 \int_0^v v \: dv = \frac{1}{2} v^{2}

G M L r r 2 d r = G M r 1 L r = G M ( r 1 L 1 ) -GM \int_L^r r^{-2} \, dr = GMr^{-1}|_L^{r} = GM(r^{-1} - L^{-1})

G M ( r 1 L 1 ) = 1 2 v 2 GM(r^{-1} - L^{-1}) = \frac{1}{2} v^{2} , v 2 = 2 G M ( r 1 L 1 ) \; \; v^{2} = 2GM(r^{-1} - L^{-1})

v = 2 G M ( r 1 L 1 ) v = -\sqrt{2GM(r^{-1} - L^{-1})}

The velocity needs to be represented by negative numbers because its vector is pointing in the direction opposite that of the position vector. If I don't use a negative velocity I will ended up with a negative number for the time.

d r d t = v \frac{dr}{dt} = v , d r = v d t \; \; dr = v \, dt , d t = v 1 d r \; \; dt = v^{-1} \, dr

d t = [ 2 G M ( r 1 L 1 ) ] 1 / 2 d r \large dt = -[2GM(r^{-1} - L^{-1})]^{-1/2} \, dr

I'm going to use a trigonometric substitution, but first I need to re-write ( r 1 L 1 ) (r^{-1} - L^{-1}) as ( u 2 a 2 ) (u^{2} - a^{2}) , so I make these substitutions

u = r 1 / 2 u = r^{-1/2} , a = L 1 / 2 \; \; a = L^{-1/2} , d r = 2 u 3 d u \; \; dr = -2u^{-3} \, du

Now for the trig substitutions draw a right triangle with an angle θ \theta . Label the hypotenuse u u . Label the side adjacent to θ \theta as a a . Then the other side is u 2 a 2 \sqrt{u^{2} -a^{2}} . From this triangle you can find the below useful relations.

c o t ( θ ) = a ( u 2 a 2 ) 1 / 2 cot(\theta) = a(u^{2}-a^{2})^{-1/2} , c o s ( θ ) = a u 1 \; \; cos(\theta) = au^{-1} , s i n ( θ ) d θ = a u 2 d u \; \; -sin(\theta) \, d \theta = -au^{-2} \, du

d u = a t a n ( θ ) s e c ( θ ) d θ du = a \; tan(\theta) \, sec(\theta) \, d \theta

Now to start putting it together

( r 1 L 1 ) 1 / 2 d r = a 1 c o t ( θ ) [ 2 a 3 c o s 3 ( θ ) ] [ a t a n ( θ ) s e c ( θ ) ] d θ = (r^{-1} - L^{-1})^{-1/2} \, dr = a^{-1} \; cot(\theta) \cdot [-2a^{-3} \; cos^{3}(\theta)] \cdot [a \; tan(\theta) \, sec(\theta)] \, d \theta =

= 2 a 3 c o s 2 ( θ ) d θ = a 3 [ 1 + c o s ( 2 θ ) ] d θ = -2a^{-3} \; cos^{2}(\theta) \, d \theta = -a^{-3} \; [1 + cos(2\theta)] \, d \theta

Getting close now. Note that a c o s ( ϕ ) acos(\phi) is the inverse cosine, also known as the arc-cosine

( r 1 L 1 ) 1 / 2 d r = a 3 [ d θ + c o s ( 2 θ ) d θ ] = a 3 [ θ + s i n ( θ ) c o s ( θ ) ] + C = \int (r^{-1} - L^{-1})^{-1/2} \, dr = -a^{-3} \: [ \int d \theta + \int cos(2\theta) \, d \theta ] = -a^{-3} \; [\theta + sin(\theta) \, cos(\theta)] + C =

= a 3 [ a c o s ( a u 1 ) + a u 2 a 2 u 2 ] + C = = -a^{-3} \: [acos(au^{-1}) + a \, \sqrt{u^{2}-a^{2}} \cdot u^{-2}] +C =

= a 3 [ a c o s ( L 1 / 2 r 1 / 2 ) + L 1 / 2 r 1 L 1 r ] + C = = -a^{-3} \: [acos(L^{-1/2} \cdot r^{1/2}) + L^{-1/2} \sqrt{r^{-1} - L^{-1}} \cdot r] + C =

= L 3 / 2 [ a c o s ( r / L ) + L 1 / 2 r r 1 L 1 ] + C = = -L^{3/2} \: [acos( \sqrt{r/L}) + L^{-1/2} \cdot r \, \sqrt{r^{-1} - L^{-1}}] + C =

= L 3 / 2 a c o s ( r / L ) r L r 1 L 1 + C = -L^{3/2} \: acos( \sqrt{r/L}) - rL \: \sqrt{r^{-1} - L^{-1}} + C

Now to find the time

t = ( 2 G M ) 1 / 2 ( r 1 L 1 ) 1 / 2 d r t = -(2GM)^{-1/2} \: \int (r^{-1} - L^{-1})^{-1/2} \, dr

When r = L r = L then t = C = 0 t = C = 0 .

t = ( 2 G M ) 1 / 2 ( L 3 / 2 a c o s ( r / L ) + r L r 1 L 1 ) \large t = (2GM)^{-1/2} \: \Bigg( \, L^{3/2} \: acos \Big( \sqrt{r/L} \Big) + rL \: \sqrt{r^{-1} - L^{-1}} \, \Bigg)

Setting r r equal to 1 0 8 m 10^{8}m you get 3.12 1 0 6 s 3.12 \cdot 10^{6}s , or 36.1 36.1 days.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...