Du inside arcsin

Calculus Level 5

0 arcsin ( 2 x 1 + x 2 ) 1 + x 2 d x = π a b \large \int_0^\infty\frac{\arcsin\left(\frac{2x}{1+x^2}\right)}{1+x^2}\text{ }dx=\frac{\pi^a}{b} Find a + b , a+b, if both are integers.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

0 arcsin ( 2 x 1 + x 2 ) 1 + x 2 d x = 0 1 arcsin ( 2 x 1 + x 2 ) 1 + x 2 d x + 1 arcsin ( 2 x 1 + x 2 ) 1 + x 2 d x \displaystyle \int_{0}^{\infty} \dfrac{\arcsin(\dfrac{2x}{1+x^{2}})}{1+x^2}dx=\int_{0}^{1} \dfrac{\arcsin(\dfrac{2x}{1+x^{2}})}{1+x^2}dx+\int_{1}^{\infty} \dfrac{\arcsin(\dfrac{2x}{1+x^{2}})}{1+x^2}dx

Then, 1 arcsin ( 2 x 1 + x 2 ) 1 + x 2 d x = 1 0 arcsin ( 2 u 1 + u 2 ) 1 + u 2 d u = 0 1 arcsin ( 2 u 1 + u 2 ) 1 + u 2 d u \displaystyle \int_{1}^{\infty} \dfrac{\arcsin(\dfrac{2x}{1+x^{2}})}{1+x^2}dx=\int_{1}^{0} \dfrac{\arcsin(\dfrac{2u}{1+u^{2}})}{1+u^2}-du=\int_{0}^{1} \dfrac{\arcsin(\dfrac{2u}{1+u^{2}})}{1+u^2}du by change x = 1 u x=\dfrac{1}{u}

0 arcsin ( 2 u 1 + u 2 ) 1 + u 2 d u = 2 ( 0 1 arcsin ( 2 u 1 + u 2 ) 1 + u 2 d u ) \displaystyle \int_{0}^{\infty} \dfrac{\arcsin(\dfrac{2u}{1+u^{2}})}{1+u^2}du=2 \left ( \int_{0}^{1} \dfrac{\arcsin(\dfrac{2u}{1+u^{2}})}{1+u^2}du \right )

Now, change u = tan ( y 2 ) \displaystyle u=\tan(\dfrac{y}{2}) . Thus the integral become

0 π 2 y 2 d y = y 2 4 = π 2 16 \displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{y}{2} dy= \dfrac{y^{2}}{4}=\dfrac{\pi^{2}}{16}

0 arcsin ( 2 u 1 + u 2 ) 1 + u 2 d u = 2 ( 0 1 arcsin ( 2 u 1 + u 2 ) 1 + u 2 d u ) \displaystyle \int_{0}^{\infty} \dfrac{\arcsin(\dfrac{2u}{1+u^{2}})}{1+u^2}du=2 \left ( \int_{0}^{1} \dfrac{\arcsin(\dfrac{2u}{1+u^{2}})}{1+u^2}du \right ) = 2 × π 2 16 = π 2 8 =2\times \dfrac{\pi^{2}}{16}=\boxed{\dfrac{\pi^{2}}{8}}

Sorry for careless mistake!

Aditya Kumar - 5 years, 9 months ago
Chew-Seong Cheong
Sep 10, 2018

I = 0 arcsin ( 2 x 1 + x 2 ) 1 + x 2 d x Let x = tan θ 2 d x = 1 2 sec 2 θ 2 d θ = 0 π arcsin ( sin θ ) 2 d θ then sin θ = 2 x 1 + x 2 = 1 2 ( 0 π 2 arcsin ( sin θ ) d θ + π 2 π arcsin ( sin θ ) d θ ) Note that π 2 arcsin x π 2 = 1 2 ( 0 π 2 θ d θ + π 2 π ( π θ ) d θ ) = 1 2 ( θ 2 2 0 π 2 + [ π θ θ 2 2 ] π 2 π ) = 1 2 ( π 2 8 0 + π 2 π 2 2 π 2 2 + π 2 8 ) = π 2 8 \begin{aligned} I & = \int_0^\infty \frac {\arcsin \left(\frac {2x}{1+x^2}\right)}{1+x^2}\ dx & \small \color{#3D99F6} \text{Let }x = \tan \frac \theta 2 \implies dx = \frac 12 \sec^2 \frac \theta 2 \ d\theta \\ & = \int_0^\pi \frac {\arcsin \left(\sin \theta \right)}2\ d\theta & \small \color{#3D99F6} \text{then } \sin \theta = \frac {2x}{1+x^2} \\ & = \frac 12 \left(\int_0^\frac \pi 2 \arcsin (\sin \theta) \ d\theta + \int_\frac \pi 2^\pi \arcsin (\sin \theta) \ d\theta \right) & \small \color{#3D99F6} \text{Note that }- \frac \pi 2 \le \arcsin x \le \frac \pi 2 \\ & = \frac 12 \left(\int_0^\frac \pi 2 \theta \ d\theta + \int_\frac \pi 2^\pi (\pi - \theta) \ d\theta \right) \\ & = \frac 12 \left(\frac {\theta^2}2 \bigg|_0^\frac \pi 2 + \left[\pi \theta - \frac {\theta^2}2\right]_\frac \pi 2^\pi \right) \\ & = \frac 12 \left(\frac {\pi^2}8 - 0 + \pi^2 - \frac {\pi^2}2 - \frac {\pi^2}2 + \frac {\pi^2}8 \right) \\ & = \frac {\pi^2}8 \end{aligned}

Therefore, a + b = 2 + 8 = 10 a+b = 2+8 = \boxed{10} .

First multiply by 2 in the integrand and 1/2 outside of it is the same thing as multiplying by 1. Recognizing that 2x/1+x^2 and 2/1+x^2 are just reversed versions of sin(x) and dx with regard to the Tangent-Half Angle Substitution allows us to perform the so-called "Reverse Weierstrass" substitution. So we end up having 1/2 times the integral of u du (Note: Since the bounds are in the domain of the arcsine function, then arcsin(sin(u)) = u), from 0 to pi/2 which equals pi^2/(4*2) = pi^2 / 8. Then 2 + 8 = 10, as desired.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...