Dual summation

Calculus Level 4

{ N = j = 1 1728 j ( j 1727 ) M = k = 1 6 k + 7 7 k + 1 k ( k + 1 ) \begin{cases} \displaystyle N = \sum_{j=1}^{1728} j(j-1727) \\ \displaystyle M = \sum_{k=1}^{\infty}\frac{6k+7}{7^{k+1}k(k+1)}\end{cases}

For N N and M M as defined above, find the remainder when M N + 1 M \dfrac{MN+1}{M} is divided by 1000.

The problem is original.


The answer is 759.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

M = k = 1 6 k + 7 7 k + 1 k ( k + 1 ) = k = 1 6 ( k + 1 ) + 1 7 k + 1 k ( k + 1 ) = k = 1 1 7 k + 1 ( 6 k + 1 k ( k + 1 ) ) = k = 1 1 7 k + 1 ( 6 k + 1 k 1 k + 1 ) = k = 1 1 7 k + 1 ( 7 k 1 k + 1 ) = k = 1 ( 1 7 k k 1 7 k + 1 ( k + 1 ) ) = 1 7 \begin{aligned} M & = \sum_{k=1}^\infty \frac {6k+7}{7^{k+1}k(k+1)} \\ & = \sum_{k=1}^\infty \frac {6(k+1)+1}{7^{k+1}k(k+1)} \\ & = \sum_{k=1}^\infty \frac 1{7^{k+1}}\left(\frac 6k + \frac 1{k(k+1)} \right) \\ & = \sum_{k=1}^\infty \frac 1{7^{k+1}}\left(\frac 6k + \frac 1k - \frac 1{k+1} \right) \\ & = \sum_{k=1}^\infty \frac 1{7^{k+1}}\left(\frac 7k - \frac 1{k+1} \right) \\ & = \sum_{k=1}^\infty \left(\frac 1{7^kk} - \frac 1{7^{k+1}(k+1)} \right) \\ & = \frac 17 \end{aligned}

N = j = 1 n j ( j ( n 1 ) ) Let n = 1728 = j = 1 n j 2 ( n 1 ) j = 1 n j = n ( n + 1 ) ( 2 n + 1 ) 6 ( n 1 ) n ( n + 1 ) 2 = n ( n + 1 ) 2 ( 2 n + 1 3 ( n 1 ) ) = n ( n + 1 ) ( n 4 ) 6 = 1728 ( 1729 ) ( 1724 ) 6 = 288 ( 1729 ) ( 1724 ) \begin{aligned} N & = \sum_{j=1}^{\color{#3D99F6}n} j(j-(n-1)) & \small \color{#3D99F6} \text{Let }n=1728 \\ & = \sum_{j=1}^n j^2 -(n-1) \sum_{j=1}^n j \\ & = \frac {n(n+1)(2n+1)}6 - (n-1)\cdot \frac {n(n+1)}2 \\ & = \frac {n(n+1)}2\left(\frac {2n+1}3-(n-1) \right) \\ & = - \frac {n(n+1)(n-4)}6 \\ & = - \frac {1728(1729)(1724)}6 \\ & = - 288(1729)(1724) \end{aligned}

Therefore,

M N + 1 M N + 1 M (mod 1000) 288 ( 1729 ) ( 1724 ) + 7 (mod 1000) 288 ( 729 ) ( 724 ) + 7 (mod 1000) 288 ( 271 ) ( 276 ) + 7 (mod 1000) 288 ( 250 + 21 ) ( 250 + 26 ) + 7 (mod 1000) 18 ( 1000 + 84 ) ( 1000 + 69 ) + 7 (mod 1000) 18 ( 84 ) ( 104 ) + 7 (mod 1000) 18 ( 100 16 ) ( 100 + 4 ) + 7 (mod 1000) 18 ( 1264 ) + 7 (mod 1000) 18 ( 264 ) + 7 (mod 1000) 4752 + 7 (mod 1000) 759 (mod 1000) \begin{aligned} \frac {MN+1}M & \equiv N + \frac 1M \text{ (mod 1000)} \\ & \equiv - 288(1729)(1724) + 7 \text{ (mod 1000)} \\ & \equiv - 288(729)(724) + 7 \text{ (mod 1000)} \\ & \equiv - 288(271)(276) + 7 \text{ (mod 1000)} \\ & \equiv - 288(250+21)(250+26) + 7 \text{ (mod 1000)} \\ & \equiv - 18(1000+84)(1000+69) + 7 \text{ (mod 1000)} \\ & \equiv - 18(84)(104) + 7 \text{ (mod 1000)} \\ & \equiv - 18(100-16)(100+4) + 7 \text{ (mod 1000)} \\ & \equiv - 18(-1264) + 7 \text{ (mod 1000)} \\ & \equiv 18(264) + 7 \text{ (mod 1000)} \\ & \equiv 4752 + 7 \text{ (mod 1000)} \\ & \equiv \boxed{759} \text{ (mod 1000)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...