Squashed ellipse

Calculus Level 2

Consider the curve defined by the parametric equations { x = a sin θ y = a sin 2 θ cos θ \begin{cases} x=a\sin \theta \\ y = a\sin^2 \theta \cos \theta \end{cases} for 0 θ 2 π . 0 \le \theta \le 2\pi.

What is the area enclosed by the curve?


Hint: Green’s theorem might help.

1 4 π a 2 \frac14 \pi a^2 1 2 π a 2 \frac12 \pi a^2 3 4 π a 2 \frac34 \pi a^2 π a 2 \pi a^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Patrick Corn
Nov 20, 2016

Relevant wiki: Green’s Theorem

Green's theorem gives the area as C y d x = 0 2 π ( a sin 2 ( θ ) cos ( θ ) ) ( a cos ( θ ) ) d θ = a 2 0 2 π sin 2 ( θ ) cos 2 ( θ ) d θ = a 2 0 2 π 1 4 sin 2 ( 2 θ ) d θ = a 2 4 0 2 π ( 1 2 1 2 cos ( 4 θ ) ) d θ = π a 2 4 a 2 8 0 2 π cos ( 4 θ ) d θ = π a 2 4 a 2 32 sin ( 4 θ ) 0 2 π = π a 2 4 . \begin{aligned} \oint_C y \, dx &= \int_0^{2\pi} (a \sin^2(\theta) \cos(\theta)) (a \cos(\theta)) \, d\theta \\ &= a^2 \int_0^{2\pi} \sin^2(\theta) \cos^2(\theta) \, d\theta \\ &= a^2 \int_0^{2\pi} \frac14 \sin^2(2\theta) \, d\theta \\ &= \frac{a^2}4 \int_0^{2\pi} \left( \frac12 - \frac12 \cos(4\theta) \right) \, d\theta \\ &= \frac{\pi a^2}4 - \frac{a^2}8 \int_0^{2\pi} \cos(4\theta) \, d\theta \\ &= \frac{\pi a^2}4 - \frac{a^2}{32} \sin(4\theta) \bigg|_0^{2\pi} \\ &= \frac{\pi a^2}4. \end{aligned}

oh my god i made a stupid mistake.

Srikanth Tupurani - 2 years, 6 months ago

Would it be wrong if we do integral x*dy?

abhishek alva - 1 year, 6 months ago

Log in to reply

try yourself and ready to face the difficulties

Aniruddha Chakraborty - 6 months, 4 weeks ago

I am a victim of harassement.

M Bi5on - 1 year, 5 months ago
Chew-Seong Cheong
Nov 21, 2016

Since the curve is symmetrical on the axes, the area it encloses is given by:

A = 4 0 π 2 y d x x = a sin θ d x = a cos θ d θ = 4 0 π 2 a 2 sin 2 θ cos 2 θ d θ = 2 a 2 B ( 3 2 , 3 2 ) B ( m , n ) is beta function. = 2 a 2 ( Γ ( 3 2 ) ) 2 Γ ( 3 ) Γ ( x ) is gamma function. = 2 a 2 ( 1 2 Γ ( 1 2 ) ) 2 2 ! = a 2 ( 1 2 π ) 2 = 1 4 π a 2 \begin{aligned} A & = 4 \int_0^\frac \pi 2 y dx & \small \color{#3D99F6} x = a\sin \theta \implies dx = a \cos \theta \ d\theta \\ & = 4 \int_0^\frac \pi 2 a^2\sin^2 \theta \cos^2 \theta \ d\theta \\ & = 2a^2 B \left(\frac 32, \frac 32 \right) & \small \color{#3D99F6} B(m,n) \text{ is beta function.} \\ & = \frac {2a^2 \left(\Gamma \left(\frac 32 \right)\right)^2}{\Gamma \left(3 \right)} & \small \color{#3D99F6} \Gamma(x) \text{ is gamma function.} \\ & = \frac {2a^2 \left(\frac 12 \Gamma \left(\frac 12 \right)\right)^2}{2!} \\ & = a^2 \left(\frac 12 \sqrt \pi \right)^2 \\ & = \boxed{\dfrac 14 \pi a^2} \end{aligned}

I am a victim of harassement.

M Bi5on - 1 year, 5 months ago

Dragging in the beta function, that's not very elegant, is it? Getting to the answer can easily be done with standard manipulations, like Patric Corn did.

Andreas Asheim - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...