During my idle days

Let x , y , z x, y, z be three positive integers with x < y < z x<y<z .

1 x y + 1 y z + 1 z x = 1 4 \frac 1{xy}+\frac 1{yz}+\frac 1{zx}=\frac 14

If there are n n solutions to the equation above of the form ( x 1 , y 1 , z 1 ) (x_1,y_1,z_1) , ( x 2 , y 2 , z 2 ) (x_2,y_2,z_2) , ( x 3 , y 3 , z 3 ) (x_3,y_3,z_3) , ( x n , y n , z n ) \cdots (x_n,y_n,z_n) , what is the value of k = 1 n ( x k + y k + z k ) \displaystyle \sum_{k=1}^n (x_k+y_k+z_k) ?


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Qweros Bistoros
Apr 8, 2020

Rewrite eqauation as x + y + z = x y z 4 x+y+z=\frac{xyz}{4}

If x 3 x≥3 then y 4 y≥4 , so x y z 4 3 z \frac{xyz}{4}≥3z , but x + y + z < 3 z x+y+z<3z

If x = 1 x=1 then 1 + y + z = y z 4 1+y+z=\frac{yz}{4} , so z = 4 + 20 y 4 z=4+\frac{20}{y-4} which is integer and grater than y for y { 5 , 6 , 8 } y \in \{5, 6, 8\}

If x = 2 x=2 , then 2 + y + z = y z 2 2+y+z=\frac{yz}{2} , so z = 2 + 8 y 2 z=2+\frac{8}{y-2} which is integer and grater than y for y { 3 , 4 } y \in \{ 3, 4 \}

So solutions are ( 1 , 5 , 24 ) , ( 1 , 6 , 14 ) , ( 1 , 8 , 9 ) , ( 2 , 3 , 10 ) , ( 2 , 4 , 6 ) (1,5,24), (1,6,14), (1,8,9), (2,3,10), (2,4,6)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...