Dynamic Geometry: P8

Geometry Level 3

The diagram shows a yellow angle called α \alpha with 0 α 9 0 0^{\circ }\le \alpha \le 90^{\circ } . We inscribe a red circle inside the angle so that its radius is always equal to 1 1 . When tan ( α ) tan ( α 2 ) = 3200 1519 \frac{\tan \left(\alpha \right)}{\tan \left(\frac{\alpha }{2}\right)}=\frac{3200}{1519} , the distance between the angle's apex (pink) and the circle's center (cyan) can be expressed as a b \frac{a}{b} where a a and b b are coprime positive integers. Find a + b a+b .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

K T
Feb 2, 2021

The double angle formula for tan is tan ( α ) = 2 tan ( α / 2 ) 1 tan 2 ( α / 2 ) \tan (α)=\frac{2\tan(α/2)}{1-\tan^2(α/2)} 1 tan 2 ( α / 2 ) = 1519 / 1600 1-\tan^2(α/2)=1519/1600 tan ( α / 2 ) = 9 / 40 \tan(α/2)=9/40 y = x tan ( α / 2 ) = 1 y=x\tan(α/2)=1 d = x 2 + y 2 = 4 0 2 + 9 2 9 2 y = 41 9 d=\sqrt{x^2+y^2}=\sqrt{\frac{40^2+9^2}{9^2}}y=\frac{41}{9}

Thank you for posting !

Valentin Duringer - 4 months, 1 week ago

Given that

tan α tan α 2 = 3200 1519 1519 tan α = 3200 tan α 2 1519 2 tan α 2 1 tan 2 α 2 = 3200 tan α 2 1519 = 1600 ( 1 tan 2 α 2 ) tan 2 α 2 = 1600 1519 1600 = 81 1600 tan α 2 = 9 40 sin α 2 = 9 4 0 2 + 9 2 = 9 41 \begin{aligned} \frac {\tan \alpha}{\tan \frac \alpha 2} & = \frac {3200}{1519} \\ 1519 \tan \alpha & = 3200 \tan \frac \alpha 2 \\ 1519 \cdot \frac {2 \tan \frac \alpha 2}{1-\tan^2 \frac \alpha 2} & = 3200 \tan \frac \alpha 2 \\ 1519 & = 1600 \left(1 - \tan^2 \frac \alpha 2 \right) \\ \tan^2 \frac \alpha 2 & = \frac {1600-1519}{1600} = \frac {81}{1600} \\ \implies \tan \frac \alpha 2 & = \frac 9{40} \\ \implies \sin \frac \alpha 2 & = \frac 9{\sqrt{40^2+9^2}} = \frac 9{41} \end{aligned}

Note that the distance between the purple point and cyan point is 1 sin α 2 = 41 9 \dfrac 1{\sin \frac \alpha 2} = \dfrac {41}9 . Therefore a + b = 41 + 9 = 50 a+b = 41+9 = \boxed{50} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...