Dynamic Geometry: P102

Geometry Level pending

The diagram shows a black circle with radius 1 1 . A vertical red chord moves horizontaly, creating two circular segments. We inscribe the largest possible circle (in cyan) in one of them and a green isosceles triangle in the other, we draw its incircle in yellow. A purple circle is the largest circle we can inscribed in one circular segment created by the green triangle. When the radii of the blue circle, the yellow incircle and one purple circle are in geometric progression (in that order from largest to smallest), the yellow incricle's radius can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find q p \sqrt{q-p} .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the center of the unit circle be O O , its diameter perpendicular to the red chord C D CD be A B AB , A B AB and C D CD intersect at E E , the radii of the cyan, yellow, and purple circles be r 1 r_1 , r 2 r_2 , and r 3 r_3 respectively, C O B = θ \angle COB = \theta then C A O = θ 2 \angle CAO = \dfrac \theta 2 , and t = tan θ 2 t = \tan \dfrac \theta 2 .

Then r 1 = B E 2 = 1 cos θ 2 = 1 1 t 2 1 + t 2 2 = t 2 1 + t 2 r_1 = \dfrac {BE}2 = \dfrac {1-\cos \theta}2 = \dfrac {1-\frac {1-t^2}{1+t^2}}2 = \dfrac {t^2}{1+t^2} .

Let P P be the center of the yellow circle and P F PF be perpendicular to A C AC . Then

A E = A P + P E = F P csc θ 2 + P E 2 2 r 1 = r 2 csc θ 2 + r 2 2 2 t 2 1 + t 2 = r 2 ( 1 + t 2 t + 1 ) r 2 = 2 t ( 1 + t 2 t ) 1 + t 2 \begin{aligned} AE & = AP + PE = FP \cdot \csc \frac \theta 2 + PE \\ 2 - 2r_1 & = r_2 \csc \frac \theta 2 + r_2 \\ 2 - \frac {2t^2}{1+t^2} & = r_2 \left(\frac {\sqrt{1+t^2}}t + 1 \right) \\ \implies r_2 & = \frac {2t(\sqrt{1+t^2}-t)}{1+t^2} \end{aligned}

Let G G and H H be the tangent points between the top purple circle and the unit circle, and the triangle respectively. Then

G H + H O = G O G H + A O sin θ 2 = G O 2 r 3 + sin θ 2 = 1 r 3 = 1 + t 2 t 2 1 + t 2 \begin{aligned} GH+HO & = GO \\ GH + AO \cdot \sin \frac \theta 2 & = GO \\ 2r_3 + \sin \frac \theta 2 & = 1 \\ \implies r_3 & = \frac {\sqrt{1+t^2}-t}{2\sqrt{1+t^2}} \end{aligned}

When the three radii are in a geometric progression, we have

r 1 r 3 = r 2 2 t 2 1 + t 2 1 + t 2 t 2 1 + t 2 = 4 t 2 ( 1 + t 2 t ) 2 ( 1 + t 2 ) 2 1 2 1 + t 2 = 4 ( 1 + t 2 t ) 1 + t 2 1 + t 2 = 8 ( 1 + t 2 ) 8 t 1 + t 2 8 t 1 + t 2 = 7 ( 1 + t 2 ) 8 t = 7 1 + t 2 64 t 2 = 49 + 49 t 2 Since θ > 18 0 t = 7 15 r 2 = 14 15 ( 1 + 49 15 7 15 ) 1 + 49 15 = 7 32 \begin{aligned} r_1r_3 & = r_2^2 \\ \frac {t^2}{1+t^2} \cdot \frac {\sqrt{1+t^2}-t}{2\sqrt{1+t^2}} & = \frac {4t^2(\sqrt{1+t^2}-t)^2}{(1+t^2)^2} \\ \frac 1{2\sqrt{1+t^2}} & = \frac {4(\sqrt{1+t^2}-t)}{1+t^2} \\ 1 + t^2 & = 8(1+t^2) - 8t\sqrt{1+t^2} \\ 8 t \sqrt{1+t^2} & = 7(1+t^2) \\ 8t & = 7\sqrt{1+t^2} \\ 64 t^2 & = 49 + 49 t^2 & \small \blue{\text{Since }\theta > 180^\circ} \\ \implies t & = - \frac 7{\sqrt{15}} \\ \implies r_2 & = \frac {\frac {14}{\sqrt{15}}\left(\sqrt{1+\frac {49}{15}} - \frac 7{\sqrt{15}}\right)}{1+\frac {49}{15}} = \frac 7{32} \end{aligned}

Therefore q p = 32 7 = 5 \sqrt{q-p} = \sqrt{32-7} = \boxed 5 .

David Vreken
Mar 30, 2021

Label the diagram as follows:

Let k = A H k = AH . Then H D = A D A H = 2 k HD = AD - AH = 2 - k , so that the radius of the blue circle is R b = 1 2 H D = 1 1 2 k R_b = \frac{1}{2}HD = 1 - \frac{1}{2}k .

A H C C H D \triangle AHC \sim \triangle CHD , so A H C H = C H H D \cfrac{AH}{CH} = \cfrac{CH}{HD} , or k C H = C H 2 k \cfrac{k}{CH} = \cfrac{CH}{2 - k} , which solves to C H = k ( 2 k ) CH = \sqrt{k(2 - k)} .

By the Pythagorean Theorem on A H C \triangle AHC , A C = A H 2 + C H 2 = k 2 + k ( 2 k ) = 2 k AC = \sqrt{AH^2 + CH^2} = \sqrt{k^2 + k(2 - k)} = \sqrt{2k} .

As an incircle of A C F \triangle ACF , the radius of the yellow circle is R y = 2 A A C F P A C F = 2 1 2 A H C F A C + A F + C F = k 2 k ( 2 k ) 2 k + 2 k + 2 k ( 2 k ) = k 2 + 4 2 k R_y = \cfrac{2A_{\triangle ACF}}{P_{\triangle ACF}} = \cfrac{2 \cdot \frac{1}{2} \cdot AH \cdot CF}{AC + AF + CF} = \cfrac{k \cdot 2\sqrt{k(2 - k)}}{\sqrt{2k} + \sqrt{2k} + 2\sqrt{k(2 - k)}} = k - 2 + \sqrt{4-2k} .

If R p R_p is the radius of the purple circle, then by the intersecting chords theorem, B G G E = A G G C BG \cdot GE = AG \cdot GC , or 2 R p ( 2 2 R p ) = 2 k 2 2 k 2 2R_p (2 - 2R_p) = \cfrac{\sqrt{2k}}{2} \cdot \cfrac{\sqrt{2k}}{2} , which rearranges to R p = 1 2 1 4 4 2 k R_p = \frac{1}{2} - \frac{1}{4}\sqrt{4-2k} .

When the radii of the blue, yellow, and purple circles are in a geometric progression, R b R p = R y 2 R_b \cdot R_p = R_y^2 , or ( 1 1 2 k ) ( 1 2 1 4 4 2 k ) = ( k 2 + 4 2 k ) 2 (1 - \frac{1}{2}k)(\frac{1}{2} - \frac{1}{4}\sqrt{4-2k}) = (k - 2 + \sqrt{4-2k})^2 , which solves to k = 15 32 k = \cfrac{15}{32} for 0 < k < 2 0 < k < 2 .

Therefore, the radius of the yellow circle is R y = 15 32 2 + 4 2 15 32 = 7 32 R_y = \cfrac{15}{32} - 2 + \sqrt{4-2 \cdot \cfrac{15}{32}} = \cfrac{7}{32} , so p = 7 p = 7 , q = 32 q = 32 , and q p = 5 \sqrt{q - p} = \boxed{5} .

Thank you for posting.

Valentin Duringer - 2 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...