Dynamic Geometry: P103

Geometry Level 4

The diagram shows two primitive Heronian triangle sharing their longest side (green). The red triangle has altitude 15 15 , 180 17 \dfrac{180}{17} , 36 5 \dfrac{36}{5} and the blue triangle has altitudes 7 7 , 24 24 , 168 25 \dfrac{168}{25} . The four circles are tangent to the sides of their respective triangles. Each center moves horizontaly at the same rate. The black quadrilateral is drawn using each center. The maximum area of the black quadrilateral can be expressed as p q \dfrac{p}{q} . Find p + q p+q .


The answer is 6331.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the large quadrilateral be A B C D ABCD . Then the area of bottom triangle A B C ABC , [ A B C ] = 1 2 15 A B = 1 2 180 17 B C = 1 2 36 5 C A [ABC] = \dfrac 12 \cdot 15 \cdot AB = \dfrac 12 \cdot \dfrac {180}{17}\cdot BC = \dfrac 12 \cdot \dfrac {36}5 \cdot CA , 15 A B = 180 17 B C = 36 5 C A \implies 15 \cdot AB = \dfrac {180}{17} \cdot BC = \dfrac {36}5 \cdot CA . Since A B C \triangle ABC is Heronian, its side lengths are integers. Assuming B C = 17 BC=17 , then we have C A = 25 CA = 25 and A B = 12 AB=12 . For the top triangle A C D ACD , with C A = 25 CA=25 , C D = 7 \implies CD = 7 and D A = 24 DA = 24 .

Since all four circles are moving at the same rate, the distance between the left vertical side of the internal quadrilateral from A A and that of its right vertical side from C C are the same. Let that distance at any moment be x x . Since the system is symmetrical about the central vertical axis of the large quadrilateral, where the two left circles interchange positions with the right two circles, we need only consider 0 x 12.5 0\le x \le 12.5 to cover all cases.

Let the radii of the top left, top right, bottom left, and bottom right circles be r 1 r_1 , r 2 r_2 , r 3 r_3 , and r 4 r_4 respectively; and D A C = α \angle DAC = \alpha , D C A = β \angle DCA = \beta , B A C = γ \angle BAC = \gamma , and B C A = δ \angle BCA = \delta . For small x x , we have:

{ r 1 = x tan α 2 = 1 cos α sin α x = 25 24 7 x = x 7 r 2 = x tan β 2 = 1 cos β sin β x = 25 7 24 x = 3 x 4 r 3 = x tan γ 2 = 1 cos γ sin γ x = 5 4 3 x = x 3 r 4 = x tan δ 2 = 1 cos δ sin δ x = 85 77 36 x = 2 x 9 \begin{cases} r_1 = x \tan \dfrac \alpha 2 = \dfrac {1-\cos \alpha}{\sin \alpha} \cdot x = \dfrac {25-24}7 x & = \dfrac x7 \\ r_2 = x \tan \dfrac \beta 2 = \dfrac {1-\cos \beta}{\sin \beta} \cdot x = \dfrac {25-7}{24} x & = \dfrac {3x}4 \\ r_3 = x \tan \dfrac \gamma 2 = \dfrac {1-\cos \gamma}{\sin \gamma} \cdot x = \dfrac {5-4}3 x & = \dfrac x3 \\ r_4 = x \tan \dfrac \delta 2 = \dfrac {1-\cos \delta}{\sin \delta} \cdot x = \dfrac {85-77}{36} x & = \dfrac {2x}9 \end{cases}

When x = 4 x = 4 , r 2 = x tan β 2 = 3 r_2 = x \tan \dfrac \beta 2 = 3 . But ( 25 x ) tan α 2 = 21 7 = 3 (25-x) \tan \dfrac \alpha 2 = \dfrac {21}7 = 3 . This means that the top right circle is tangent to both C D CD and D A DA , and the base line C A CA . For x > 4 x > 4 , r 2 = ( 25 x ) tan α 2 = 25 x 7 r_2 = (25-x) \tan \dfrac \alpha 2 = \dfrac {25-x}7 . Similarly, when x = 10 x=10 , r 3 = x 3 = 10 3 r_3 = \dfrac x3 = \dfrac {10}3 ; but ( 25 x ) tan δ 2 = 10 3 (25-x) \tan \dfrac \delta 2 = \dfrac {10}3 . r 3 = 2 ( 25 x ) 9 \implies r_3 = \dfrac {2(25-x)}9 for x > 10 x > 10 .

Therefore the area of the internal quadrilateral is given by:

A = ( r 1 + r 2 + r 3 + r 4 ) ( 25 2 x ) 2 = { 25 2 x 2 ( x 7 + 3 x 4 + x 3 + 2 x 9 ) f o r 0 x 4 25 2 x 2 ( x 7 + 25 x 7 + x 3 + 2 x 9 ) f o r 4 x 10 25 2 x 2 ( x 7 + 25 x 7 + 2 ( 25 x ) 9 + 2 x 9 ) f o r 10 x 12.5 = { 365 x ( 25 2 x ) 504 f o r 0 x 4 ( 25 2 x ) ( 35 x + 225 ) 126 f o r 4 x 10 575 ( 25 2 x ) 126 f o r 10 x 12.5 \begin{aligned} A = \frac {(r_1+r_2+r_3+r_4)(25-2x)}2 & = \begin{cases} \dfrac {25-2x}2 \left(\dfrac x7 + \dfrac {3x}4 + \dfrac x3 + \dfrac {2x}9 \right) & \rm for \ 0 \le x \le 4 \\ \dfrac {25-2x}2 \left(\dfrac x7 + \dfrac {25-x}7 + \dfrac x3 + \dfrac {2x}9 \right) & \rm for \ 4 \le x \le 10 \\ \dfrac {25-2x}2 \left(\dfrac x7 + \dfrac {25-x}7 + \dfrac {2(25-x)}9 + \dfrac {2x}9 \right) & \rm for \ 10 \le x \le 12.5 \end{cases} \\ & = \begin{cases} \dfrac {365x(25-2x)}{504} & \rm for \ 0 \le x \le 4 \\ \dfrac {(25-2x)(35x+225)}{126} & \rm for \ 4 \le x \le 10 \\ \dfrac {575(25-2x)}{126} & \rm for \ 10 \le x \le 12.5 \end{cases} \end{aligned}

Plotting A A against x x , we find that A A is maximum, when x = 4 x = 4 . That is

A max = 365 ( 4 ) ( 25 2 ( 4 ) ) 504 = 6205 126 A_{\max} = \frac {365(4)(25-2(4))}{504} = \frac {6205}{126}

Therefore p + q = 6205 + 126 = 6331 p+q = 6205+126 = \boxed{6331} .

Nice analysis !

Valentin Duringer - 2 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...