Dynamic Geometry: P105

Geometry Level 4

The diagram shows a black semicircle with radius 1 1 . The cyan and green semicircle are growing and shrinking freely on the black semicirle's diameter. The purple circle is internally tangent to the black semicircle and tangent to both green and cyan semicircle. The red and orange circles are internally tangent to the black semicircle and tangent to the purple circle and to one of the bottom semicircles.Using the tangency points, we draw a blue and an yellow triangle. When the sum of the curvature of each circle (purple, red, orange) is equal to 211 8 \dfrac{211}{8} , the ratio of the area of both triangles can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 1030.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 13, 2021

This is probably the last of Dynamic Geometry: P80 Series by @Valentin Duringer . A lot of calculations in the earlier problems in the series are necessary before we can answer this problem. I have compiled the calculations into a note for better understanding and ease of reference so that my solution to this problem is shorter. I will update the solutions of other problems in the series.

Solution to Dynamic Geometry: P105

Let the center of the unit semicircle be O ( 0 , 0 ) O(0,0) , the origin of the x y xy -plane, its diameter base A B AB , the center of the purple circle be P P , P O B = θ \angle POB = \theta , and t = tan θ 2 t = \tan \frac \theta 2 .

From the calculations in Dynamic Geometry: P80 Series , the radii of the purple, red, and orange circles, r r , r 3 r_3 , and r 4 r_4 respectively are:

{ r = 2 t ( 1 + t ) 2 r 3 = 2 t 9 t 2 + 2 t + 1 r 4 = 2 t t 2 + 2 t + 9 \begin{cases} r = \dfrac {2t}{(1+t)^2} \\ r_3 = \dfrac {2t}{9t^2+2t+1} \\ r_4 = \dfrac {2t}{t^2+2t+9} \end{cases}

When the sum of the curvatures of these circles is 211 8 \dfrac {211}8 , we have:

1 r + 1 r 3 + 1 r 4 = 211 8 ( 1 + t ) 2 2 t + 9 t 2 + 2 t + 1 2 t + t 2 + 2 t + 9 2 t = 211 8 t = 4 \begin{aligned} \frac 1r + \frac 1{r_3} + \frac 1{r_4} & = \frac {211}8 \\ \frac {(1+t)^2}{2t} + \frac {9t^2+2t+1}{2t} + \frac {t^2+2t+9}{2t} & = \frac {211}8 \\ \implies t & = 4 \end{aligned}

From the calculations in Dynamic Geometry: P80 Series again, the vertices of the two triangle are:

{ S 1 ( 1 13 t 2 13 t 2 + 4 t + 1 , 6 t 13 t 2 + 4 t + 1 ) , S 2 ( 1 5 t 2 5 t 2 + 2 t + 1 , 4 t 5 t 2 + 2 t + 1 ) , S 3 ( 1 9 t 2 9 t 2 + 1 , 6 t 9 t 2 + 1 ) T 1 ( 13 t 2 t 2 + 4 t + 13 , 6 t t 2 + 4 t + 13 ) , T 2 ( 5 t 2 t 2 + 2 t + 5 , 4 t t 2 + 2 t + 5 ) , T 3 ( 9 t 2 t 2 + 9 , 6 t t 2 + 9 ) \begin{cases} S_1 \left(\dfrac {1-13t^2}{13t^2+4t+1}, \dfrac {6t}{13t^2+4t+1} \right), & S_2 \left(\dfrac {1-5t^2}{5t^2+2t+1}, \dfrac {4t}{5t^2+2t+1} \right), & S_3 \left(\dfrac {1-9t^2}{9t^2+1}, \dfrac {6t}{9t^2+1} \right) \\ T_1 \left(\dfrac {13-t^2}{t^2+4t+13}, \dfrac {6t}{t^2+4t+13} \right), & T_2 \left(\dfrac {5-t^2}{t^2+2t+5}, \dfrac {4t}{t^2+2t+5} \right), & T_3 \left(\dfrac {9-t^2}{t^2+9}, \dfrac {6t}{t^2+9} \right) \end{cases}

When t = 4 t=4 ,

{ S 1 ( 23 25 , 8 75 ) , S 2 ( 79 89 , 16 89 ) , S 3 ( 143 145 , 24 145 ) T 1 ( 1 15 , 8 15 ) , T 2 ( 11 29 , 16 29 ) , T 3 ( 7 25 , 24 25 ) \begin{cases} S_1 \left(-\dfrac {23}{25}, \dfrac 8{75} \right), & S_2 \left(-\dfrac {79}{89}, \dfrac {16}{89} \right), & S_3 \left(-\dfrac {143}{145}, \dfrac {24}{145} \right) \\ T_1 \left(-\dfrac 1{15}, \dfrac 8{15} \right), & T_2 \left(-\dfrac {11}{29}, \dfrac {16}{29} \right), & T_3 \left(-\dfrac 7{25}, \dfrac {24}{25} \right) \end{cases}

We can find the areas of the two triangles using shoelace formula .

{ A S = 1 2 ( 23 25 + 143 145 ) ( 16 89 8 75 ) ( 23 25 + 79 89 ) ( 24 145 8 75 ) = 1088 322625 A T = 1 2 ( 1 15 + 7 25 ) ( 16 29 8 15 ) ( 1 15 + 11 29 ) ( 24 25 8 15 ) = 704 10875 A S A T = 1088 322625 10875 704 = 51 979 \begin{cases} A_S = \dfrac 12 \left|\left(-\dfrac {23}{25} + \dfrac {143}{145} \right) \left(\dfrac {16}{89} - \dfrac 8{75} \right) - \left(-\dfrac {23}{25} + \dfrac {79}{89} \right) \left(\dfrac {24}{145} - \dfrac 8{75} \right) \right| & = \dfrac {1088}{322625} \\ A_T = \dfrac 12 \left|\left(-\dfrac 1{15} + \dfrac 7{25} \right) \left(\dfrac {16}{29} - \dfrac 8{15} \right) - \left(-\dfrac 1{15} + \dfrac {11}{29} \right) \left(\dfrac {24}{25} - \dfrac 8{15} \right) \right| & = \dfrac {704}{10875} \end{cases} \\ \implies \frac {A_S}{A_T} = \frac {1088}{322625} \cdot \frac {10875}{704} = \frac {51}{979}

Therefore p + q = 51 + 979 = 1030 p+q = 51+979 = \boxed{1030} .

Very impressive analysis (+note).

Valentin Duringer - 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...