Dynamic Geometry: P106

Geometry Level 5

The diagram shows a black circle. A horizontal yellow chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . The red point moves freely along the black circle. We use this chord and the red point to draw the yellow triangle. The triangle's incenter (green point) traces a locus (purple curve and blue curve). The area bounded by both curves can be expressed as:

p tan 1 ( m n ) + q tan 1 ( n m ) l p\tan ^{-1}\left(\frac{m}{n}\right)+q\tan ^{-1}\left(\frac{n}{m}\right)-l

where p p , q q , m m , n n and l l are positive integers. m m and n n are coprime. Find p + q + m + n + l p+q+m+n+l .


The answer is 252.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the center of the circle be O O , the triangle A B C ABC , where A B AB is the horizontal chord, the center and radius of the incircle at any moment be P P and r r , and P N PN and O M OM be perpendicular to A B AB . Since the heights of two circular segments are 4 4 and 9 9 , the diameter of the circle is 13 13 , hence its radius 6.5 6.5 . Then A M = B M = 6 AM = BM = 6 and O M = 2.5 OM = 2.5 . The smaller A O B = 2 tan 1 12 5 \angle AOB = 2 \tan^{-1} \frac {12}5 and the larger A O B = 2 π 2 tan 1 12 5 \angle AOB = 2\pi - 2 \tan^{-1} \frac {12}5 . When C C is on top, A C B = 1 2 ( 2 π 2 tan 1 12 5 ) = π tan 1 12 5 \angle ACB = \frac 12 \left(2\pi - 2 \tan^{-1} \frac {12}5 \right) = \pi - \tan^{-1} \frac {12}5 . Let C A B = θ \angle CAB = \theta , then C B A = tan 1 12 5 θ \angle CBA = \tan^{-1} \frac {12}5 - \theta , and

A N + N B = A B r cot θ 2 + r cot ( 1 2 tan 1 12 5 θ 2 ) = 12 Let t = tan θ 2 r t + 1 + 2 3 t 2 3 t r = 12 r = 12 1 t + 3 + 2 t 2 3 t = 6 t ( 2 3 t ) 1 + t 2 \begin{aligned} AN + NB & = AB \\ r \cot \frac \theta 2 + r \cot \left(\frac 12 \tan^{-1} \frac {12}5 - \frac \theta 2 \right) & = 12 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac rt + \frac {1+\frac 23t}{\frac 23 -t} \cdot r & = 12 \\ \implies r & = \frac {12}{\frac 1t + \frac {3+2t}{2-3t}} = \frac {6t(2-3t)}{1+t^2} \end{aligned}

Let the midpoint of A B AB be the origin of the x y xy -plane and an arbitrary point on the upper locus be P ( x , y ) P(x,y) . Then

{ y = r = 6 t ( 2 3 t ) 1 + t 2 x = r t 6 = 6 ( 2 3 t ) 1 + t 2 6 \begin{cases} y = r = \dfrac {6t(2-3t)}{1+t^2} \\ x = \dfrac rt - 6 = \dfrac {6(2-3t)}{1+t^2} - 6 \end{cases}

Then the area under the locus is

A 1 = 6 6 y d x = 6 6 6 t ( 2 3 t ) 1 + t 2 d ( 6 ( 2 3 t ) 1 + t 2 6 ) = 0 2 3 36 t ( 2 3 t ) ( 3 + 4 t 3 t 2 ) ( 1 + t 2 ) 3 d t = 117 tan 1 2 3 54 \begin{aligned} A_1 & = \int_{-6}^6 y \ \ce dx \\ & = \int_{-6}^6 \frac {6t(2-3t)}{1+t^2} \ce d \left(\dfrac {6(2-3t)}{1+t^2} - 6 \right) \\ & = \int_0^\frac 23 \frac {36t(2-3t)(3+4t-3t^2)}{(1+t^2)^3} \ce dt \\ & = 117 \tan^{-1} \frac 23 - 54 \end{aligned}

Similarly, when C C is at the bottom, A C B \angle ACB is half the smaller A O B \angle AOB , A C B = tan 1 12 5 \implies \angle ACB = \tan^{-1} \dfrac {12}5 , r = y = 4 t ( 3 2 t ) 1 + t 2 r = y = \dfrac {4t(3-2t)}{1+t^2} , x = 4 ( 3 2 t ) 1 + t 2 6 x = \dfrac {4(3-2t)}{1+t^2} - 6 , and the area under the locus is

A 2 = 6 6 y d x = 6 6 4 t ( 3 2 t ) 1 + t 2 d ( 4 ( 3 2 t ) 1 + t 2 6 ) = 0 3 2 36 t ( 2 3 t ) ( 3 + 4 t 3 t 2 ) ( 1 + t 2 ) 3 d t = 52 tan 1 3 2 24 \begin{aligned} A_2 & = \int_{-6}^6 y \ \ce dx \\ & = \int_{-6}^6 \frac {4t(3-2t)}{1+t^2} \ce d \left(\dfrac {4(3-2t)}{1+t^2} - 6 \right) \\ & = \int_0^\frac 32 \frac {36t(2-3t)(3+4t-3t^2)}{(1+t^2)^3} \ce dt \\ & = 52 \tan^{-1} \frac 32 - 24 \end{aligned}

Therefore A 1 + A 2 = 117 tan 1 2 3 + 52 tan 1 3 2 78 A_1 + A_2 = 117 \tan^{-1} \frac 23 + 52 \tan^{-1} \frac 32 - 78 and p + q + m + n + 1 = 117 + 52 + 2 + 3 + 78 = 252 p+q+m+n+1 = 117+52+2+3+78 = \boxed{252}

Clever integration !

Valentin Duringer - 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...