Dynamic Geometry: P109

Geometry Level pending

The diagram shows a black circle. A horizontal yellow chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we inscribe the largest rectangle possible. The center of both rectangles traces a locus (purple curve). The area bounded by the purple curve can be expressed as p q π \dfrac{p}{q}\pi , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 201.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The radius of the circle is R = 4 + 9 2 = 6.5 R=\dfrac{4+9}{2}=6.5 . We place the configuration on a coordinate system, so that the center of the circle is the origin and the common cord A B AB of the circular segments lies on the line y = 2.5 y=2.5 , as seen on the figure. Due to symmetry, A A and B B have opposite x x -coordinates. Their y y -coordinate is 2.5 2.5 . The equation of the circle is x 2 + y 2 = ( 6.5 ) 2 {{x}^{2}}+{{y}^{2}}={{\left( 6.5 \right)}^{2}} We focus on the upper circular segment. Let C ( x 1 , y 1 ) C\left( {{x}_{1}},{{y}_{1}} \right) be the third vertex of the cyan triangle. The largest rectangle inscribed in A B C ABC with its base on A B AB is the one that joints the midpoints M M , N N of C A CA and C B CB respectively. Let P P , Q Q be the other two vertices of the rectangle. The center E E of M N P Q MNPQ is the midpoint of M P MP , so we have x E = x M + x P 2 = x A + x C 2 + x N 2 = x A + x 1 2 + x C + x B 2 2 = x A + 2 x 1 + x B 4 = x 1 2 {{x}_{E}}=\dfrac{{{x}_{M}}+{{x}_{P}}}{2}=\dfrac{\dfrac{{{x}_{A}}+{{x}_{C}}}{2}+{{x}_{N}}}{2}=\dfrac{\dfrac{{{x}_{A}}+{{x}_{1}}}{2}+\dfrac{{{x}_{C}}+{{x}_{B}}}{2}}{2}=\dfrac{\cancel{{{x}_{A}}}+2{{x}_{1}}+\cancel{{{x}_{B}}}}{4}=\dfrac{{{x}_{1}}}{2} x 1 = 2 x E \Rightarrow {{x}_{1}}=2{{x}_{E}} y E = y M + y P 2 = y A + y C 2 + y A 2 = 3 y A + y 1 4 = 3 × 2.5 + y 1 4 = 2 y 1 15 8 {{y}_{E}}=\dfrac{{{y}_{M}}+{{y}_{P}}}{2}=\dfrac{\dfrac{{{y}_{A}}+{{y}_{C}}}{2}+{{y}_{A}}}{2}=\dfrac{3{{y}_{A}}+{{y}_{1}}}{4}=\dfrac{3\times 2.5+{{y}_{1}}}{4}=\dfrac{2{{y}_{1}}-15}{8} y 1 = 8 y E 15 2 \Rightarrow {{y}_{1}}=\dfrac{8{{y}_{E}}-15}{2} Since C C belongs to the circle, it holds x 1 2 + y 1 2 = ( 6.5 ) 2 ( x E 2 ) 2 + ( 8 y E 15 2 ) 2 = ( 6.5 ) 2 x E 2 ( 13 4 ) 2 + ( y E 15 8 ) 2 ( 13 8 ) 2 = 1 \begin{aligned} {{x}_{1}}^{2}+{{y}_{1}}^{2}={{\left( 6.5 \right)}^{2}} & \Rightarrow {{\left( \dfrac{{{x}_{E}}}{2} \right)}^{2}}+{{\left( \dfrac{8{{y}_{E}}-15}{2} \right)}^{2}}={{\left( 6.5 \right)}^{2}} \\ & \Rightarrow \dfrac{{{x}_{E}}^{2}}{{{\left( \dfrac{13}{4} \right)}^{2}}}+\dfrac{{{\left( {{y}_{E}}-\dfrac{15}{8} \right)}^{2}}}{{{\left( \dfrac{13}{8} \right)}^{2}}}=1 \\ \end{aligned} Hence, the center E E of the red rectangle M N P Q MNPQ belongs to the ellipse with equation x 2 ( 13 4 ) 2 + ( y 15 8 ) 2 ( 13 8 ) 2 = 1 \dfrac{{{x}^{2}}}{{{\left( \dfrac{13}{4} \right)}^{2}}}+\dfrac{{{\left( y-\dfrac{15}{8} \right)}^{2}}}{{{\left( \dfrac{13}{8} \right)}^{2}}}=1 In fact it traces the part of the ellipse that is over the cord A B AB ( y 2.5 ) \left( y\ge 2.5 \right) .

Working likewise, we find that the center of the green rectangle traces the rest of the same ellipse.

The semi-axes of the ellipse are a = 13 4 a=\dfrac{13}{4} and b = 13 8 b=\dfrac{13}{8} , thus the area of the locus is A = a b π = 13 4 13 8 π = 169 32 π A=ab\pi =\frac{13}{4}\cdot \dfrac{13}{8}\cdot \pi =\dfrac{169}{32}\pi For the answer, p = 169 p=169 , q = 32 q=32 , thus, p + q = 201 p+q=\boxed{201} .

Thank you for posting dear Thanos.

Valentin Duringer - 2 months ago

[ Updated to provide a shorter explanation. ] \red{[\text{Updated to provide a shorter explanation.}]} . Let O O , the center of the circle, be the origin ( 0 , 0 ) (0,0) of the x y xy -plane, the variable triangle be A B C \triangle ABC (note that A B C \triangle ABC follows the same equations whether C C is on top or at the bottom), O C OC makes an angle of θ \theta with the x x -axis. Referring to the calculations in Dynamic Geometry: P96 Series , the circle has a radius of 6.5 6.5 , A B = 12 AB = 12 , A B AB is along y = 2.5 y=2.5 , and the largest rectangle inscribed by a triangle has a height and breadth half of those of the triangle.

Then C = ( u , v ) = ( 6.5 cos θ , 6.5 sin θ ) C=(u,v) = (6.5 \cos \theta, 6.5 \sin \theta) . The height of K L M N KLMN , N K = L M = v 2.5 2 = 6.5 sin θ 2.5 2 NK=LM = \dfrac {v - 2.5} 2 = \dfrac {6.5 \sin \theta - 2.5}2 . Note that K L C \triangle KLC and A B C \triangle ABC are similar, then K L = A B 2 = 6 KL = \dfrac {AB}2 = 6 , the x x -coordinate of K K and N N , x K = 6.5 cos θ 6 2 x_K = \dfrac {6.5 \cos \theta - 6}2 and that of L L and M M , x L = 6.5 cos θ + 6 2 x_L = \dfrac {6.5 \cos \theta + 6}2 . Let the arbitrary point on the locus or the center of rectangle K L M N KLMN be P ( x , y ) P(x,y) . Then the coordinates of P P :

{ x = x K + x L 2 = 13 cos θ 4 4 x 13 = cos θ y = L M + 2.5 + 2.5 2 = 13 sin θ 8 + 3 16 8 13 ( y 3 16 ) = sin θ x 2 ( 13 4 ) 2 + ( y 3 16 ) 2 ( 13 8 ) 2 = 1 \begin{cases} x = \dfrac {x_K+x_L}2 = \dfrac {13 \cos \theta}4 & \implies \dfrac {4x}{13} = \cos \theta \\ y = \dfrac {LM+2.5+2.5}2 = \dfrac {13 \sin \theta}8 + \dfrac 3{16} & \implies \dfrac 8{13} \left(y - \dfrac 3{16} \right) = \sin \theta \end{cases} \\ \implies \frac {x^2}{\left(\frac {13}4\right)^2} + \frac {\left(y-\frac 3{16}\right)^2}{\left(\frac {13}8\right)^2} = 1

Therefore the locus is an ellipse with center at ( 0 , 3 16 ) \left(0, \dfrac 3{16}\right) , a major semi-axis a = 13 4 a = \dfrac {13}4 , a minor semi-axis b = 13 8 b = \dfrac {13}8 , and an area of a b π = 13 4 13 8 π = 169 32 π ab \pi = \dfrac {13}4 \cdot \dfrac {13}8 \pi = \dfrac {169}{32} \pi . p + q = 169 + 32 = 201 \implies p + q = 169+32 = \boxed{201} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...