Dynamic Geometry: P111

Geometry Level 4

The diagram shows a black circle. A horizontal yellow chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we inscribe the largest rectangle possible. The triangles are both evolving so that the two green angles are always equal. When the ratio of upper rectangle's area to the lower rectangle's area is equal to 11 61 \dfrac{11}{61} , the distance between the two moving points of both triangles can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 212.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The radius of the circle is R = 4 + 9 2 = 6.5 R=\dfrac{4+9}{2}=6.5 . Let A B AB be the yellow cord and M M its midpoint. Let E M EM and F M FM be the heights of the circular segments, as seen in the figure.
By Intersecting Cords Theorem ,

A M M B = E M M F ( A B 2 ) 2 = 4 × 9 A B = 12 AM\cdot MB=EM\cdot MF\Rightarrow {{\left( \dfrac{AB}{2} \right)}^{2}}=4\times 9\Rightarrow AB=12 We place the configuration on a coordinate system, so that the center of the circle is point K ( 0 , 2.5 ) K\left( 0,-2.5 \right) . Then, the equation of the circle is x 2 + ( y + 2.5 ) 2 = 6.5 2 {{x}^{2}}+{{\left( y+2.5 \right)}^{2}}={{6.5}^{2}} The common cord A B AB of the circular segments lies on the x x -axis with A ( 6 , 0 ) A\left( -6,0 \right) and B ( 6 , 0 ) B\left( 6,0 \right) . Let the upper triangle be C A B \triangle CAB and the lower D A B \triangle DAB , as seen on the figure. Since the biggest rectangle inscribed in each triangle has half the height and half the width of the corresponding triangle, its area is one fourth the area of the triangle.

Consequently, denoting each green angle by θ \theta , we have 11 61 = area of upper rectangle area of lower rectangle = 1 2 [ C A B ] 1 2 [ C D B ] = 1 2 A B A C sin θ 1 2 A B A D sin θ = A C A D \dfrac{11}{61}=\dfrac{\text{area of upper rectangle}}{\text{area of lower rectangle}}=\dfrac{\cancel{\dfrac{1}{2}}\left[ CAB \right]}{\cancel{\dfrac{1}{2}}\left[ CDB \right]}=\dfrac{\dfrac{1}{2}AB\cdot AC\cdot \sin \theta }{\dfrac{1}{2}AB\cdot AD\cdot \sin \theta }=\dfrac{AC}{AD} A D = 61 11 A C ( 1 ) \Rightarrow AD=\frac{61}{11}AC \ \ \ \ \ (1) Because the green angles are equal, the reflection C {C}' of point C C w.r.t. the x x -axis lies on A D AD , thus, vectors A C \overrightarrow{A{C}'} and A D \overrightarrow{AD} have the same direction.
Using points A ( 6 , 0 ) A\left( -6,0 \right) , hence, taking into account ( 1 ) (1) and the fact that A C = A C A{C}'=AC , we have

A D = 61 11 A C ( x D x A , y D y A ) = 61 11 ( x C x A , y C y A ) ( x D + 6 , y D ) = 61 11 ( x C + 6 , y C ) 0 { x D = 61 x C + 300 11 0 y D = 61 11 y C ( 2 ) \begin{aligned} \overrightarrow{AD}=\dfrac{61}{11}\overrightarrow{A{C}'} & \Rightarrow \left( {{x}_{D}}-{{x}_{A}},{{y}_{D}}-{{y}_{A}} \right)=\dfrac{61}{11}\left( {{x}_{{{C}'}}}-{{x}_{A}},{{y}_{{{C}'}}}-{{y}_{A}} \right) \\ & \Rightarrow \left( {{x}_{D}}+6,{{y}_{D}} \right)=\dfrac{61}{11}\left( {{x}_{C}}+6,-{{y}_{C}} \right) \\ \phantom{0} \\ & \Rightarrow \left\{ \begin{matrix} {{x}_{D}}=\dfrac{61{{x}_{C}}+300}{11} \\ \phantom{0} \\ {{y}_{D}}=-\dfrac{61}{11}{{y}_{C}} \\ \end{matrix} \right. \ \ \ \ \ \ (2) \\ \end{aligned} Since both points C C and D D belong to the circle we get the system of equations

{ x C 2 + ( y C + 2.5 ) 2 = 6.5 2 0 x D 2 + ( y D + 2.5 ) 2 = 6.5 2 { x C 2 + ( y C + 2.5 ) 2 = 6.5 2 0 ( 61 x C + 300 11 ) 2 + ( 61 11 y C ) 2 = 6.5 2 \left\{ \begin{matrix} {{x}_{C}}^{2}+{{\left( {{y}_{C}}+2.5 \right)}^{2}}={{6.5}^{2}} \\ \phantom{0} \\ {{x}_{D}}^{2}+{{\left( {{y}_{D}}+2.5 \right)}^{2}}={{6.5}^{2}} \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} {{x}_{C}}^{2}+{{\left( {{y}_{C}}+2.5 \right)}^{2}}={{6.5}^{2}} \\ \phantom{0} \\ {{\left( \dfrac{61{{x}_{C}}+300}{11} \right)}^{2}}+{{\left( -\dfrac{61}{11}{{y}_{C}} \right)}^{2}}={{6.5}^{2}} \\ \end{matrix} \right. which solves to x C = 171 34 y C = 55 34 {{x}_{C}}=-\dfrac{171}{34} \ \ \ \ \ \ {{y}_{C}}=\dfrac{55}{34} Consequently,
( 2 ) ( x D , y D ) = ( 21 34 , 305 34 ) \left( 2 \right)\Rightarrow \left( {{x}_{D}},{{y}_{D}} \right)=\left( -\dfrac{21}{34},-\dfrac{305}{34} \right) Now we can calculate the length of C D CD :

C D = ( x D x C ) 2 + ( y D y C ) 2 = ( 21 34 + 171 34 ) 2 + ( 305 34 55 34 ) 2 = 195 17 CD=\sqrt{{{\left( {{x}_{D}}-{{x}_{C}} \right)}^{2}}+{{\left( {{y}_{D}}-{{y}_{C}} \right)}^{2}}}=\sqrt{{{\left( -\dfrac{21}{34}+\dfrac{171}{34} \right)}^{2}}+{{\left( -\dfrac{305}{34}-\dfrac{55}{34} \right)}^{2}}}=\dfrac{195}{17} For the answer, p = 195 p=195 , q = 17 q=17 , thus, p + q = 212 p+q=\boxed{212} .

Great use of the intersecting chord theorem!

Valentin Duringer - 2 months ago

[Updated to provide a better explanation.] \red{\text{[Updated to provide a better explanation.]}} Let the dividing chord of the circle be A B AB , the upper and lower variable triangles be A B C \triangle ABC and A B C \triangle ABC' respectively, and the measure of the green angle be θ \theta . Referring the calculations in Dynamic Geometry: P96 Series , the radius of the circle is 6.5 6.5 , A B = 12 AB=12 , A C B = π tan 1 12 5 \angle ACB = \pi - \tan^{-1} \frac {12}5 , A C B = tan 1 12 5 \angle AC'B = \tan^{-1} \frac {12}5 , and the biggest rectangle inscribed by a triangle is one with half the height and width of those of the triangle.

[Updated; much simpler solution using cyclic quadrilateral.] \red{\text{[Updated; much simpler solution using cyclic quadrilateral.]}} Since A B C \triangle ABC and A B C \triangle ABC' have the same base A B = 12 AB = 12 , the width of both upper and lower rectangles is 6 6 . The heights of the two triangles are h = A C sin θ h = AC \sin \theta and h = A C sin θ h' = AC' \sin \theta . Then the ratio of their areas ' 6 h 2 6 h 2 = 6 1 2 A C sin θ 6 1 2 A C sin θ = A C A C = 11 61 \frac {6 \cdot \frac h2}{6 \cdot \frac {h'}2} = \frac {6 \cdot \frac 12 AC \sin \theta}{6 \cdot \frac 12 AC' \sin \theta} = \frac {AC}{AC'} = \frac {11}{61}

If A C = a AC = a , A C = 61 11 a = k a AC' = \dfrac {61}{11} a = ka , where k = 61 11 k = \dfrac {61}{11} .

Since A C B C ACBC' is a cyclic quadrilateral , B C C = B A C = θ \angle BCC' = \angle BAC' = \theta and B C C = B A C = θ \angle BC'C = \angle BAC = \theta . Therefore B C C \triangle BCC' is isosceles and B C = B C = b BC = BC' = b . By cosine rule ,

{ a 2 + b 2 2 a b cos ( π tan 1 12 5 ) = a 2 + b 2 + 10 13 a b = 144 . . . ( 1 ) k 2 a 2 + b 2 2 k a b cos ( tan 1 12 5 ) = k 2 a 2 + b 2 10 13 k a b = 144 . . . ( 2 ) ( 2 ) ( 1 ) : ( k 2 1 ) a 2 10 a b ( k + 1 ) 13 = 0 b = 13 a 10 ( k 1 ) = 13 a 10 ( 61 11 1 ) = 65 11 a ( 1 ) : a 2 + 6 5 2 1 1 2 a 2 + 10 13 65 11 a 2 = 144 a = 11 34 b = 65 34 \begin{cases} a^2 + b^2 - 2ab \cos \left(\pi - \tan^{-1} \dfrac {12}5 \right) = a^2 + b^2 + \dfrac {10}{13}ab = 144 & ...(1) \\ k^2a^2 + b^2 - 2kab \cos \left(\tan^{-1} \dfrac {12}5 \right) = k^2a^2 + b^2 - \dfrac {10}{13}kab = 144 & ...(2) \end{cases} \\ \begin{aligned} (2) - (1): \quad (k^2 -1)a^2 - \frac {10ab(k+1)}{13} & = 0 \\ \implies b & = \frac {13a}{10} (k-1) = \frac {13a}{10}\left(\frac {61}{11}-1 \right) = \frac {65}{11}a \\ (1): \quad a^2 + \frac {65^2}{11^2}a^2 + \frac {10}{13} \cdot \frac {65}{11} a^2 & = 144 \\ \implies a & = \frac {11}{\sqrt{34}} \\ b & = \frac {65}{\sqrt{34}} \end{aligned}

Let the distance between the two moving points C C = d CC' = d . By Ptolemy's theorem ,

A B C C = A C B C + A C B C 12 d = a b + 61 11 a b = 72 11 a b = 72 11 11 65 34 d = 195 17 \begin{aligned} AB \cdot CC' & = AC \cdot BC' + AC' \cdot BC \\ 12d & = ab + \frac {61}{11}ab = \frac {72}{11}ab = \frac {72}{11} \cdot \frac {11 \cdot 65}{34} \\ \implies d & = \frac {195}{17} \end{aligned}

Therefore p + q = 195 + 17 = 212 p+q = 195+17 = \boxed{212} .

Thank you for posting.

Valentin Duringer - 2 months ago

Log in to reply

Updated my solution/ Much easier using cyclic quadrilateral.

Chew-Seong Cheong - 2 months ago

Log in to reply

Well done, I did not even thought about using cyclic quadrilateral.

Valentin Duringer - 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...